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Abstract—The main aim of this research is to present and 
study several basic characteristics of the idea of t-extending 
semimodules. The semimodule F is said to be a t-extending 
semimodule if each t-closed sub-semimodule of F is t-essential 
in a direct summand of F. Hence, the behavior of the t-
extending semimodule is considered. In addition, the 
relationship between the t-essential (t-closed) and essential 
(closed) has been studied and investigated as well. Finally, in 
this work, there are a number of results related to the t-
extending property, which is one of the generalizations of 
extending property, (every extending is t-extending, while the 
converse is not true). 

Keywords— t-essential subsemimodule, t-closed 

subsemimodule, t-extending semimodule, extending semimodule, 
z2-torsion semimodule. 

I. INTRODUCTION 

   In this work, the t-extending semimodule over a semiring 

will be introduced and investigated. Throughout this paper, 

R will denote a commutative semiring with identity, and F is 

a left R-semimodule. A semiring is a non-empty set R with 

two operations of addition (+) and multiplication (⋅) such 

that (R, +) is a commutative monoid with identity element 0; 

(R, ⋅) is a monoid with identity element 1 ≠ 0; r0 = 0r = 0 

for all r∈R; a(b + c) = ab+ac and (b + c)a = ba + ca for 

every a, b, c ∈R. We say that R is a commutative semiring if 

the monoid (R, ⋅) is commutative [1]. Let (F, +) be an 

additive abelian monoid with additive identity 0F, then F is 

called a left  R-semimodule if there exists a scalar 

multiplication R×F⟶F denoted by (r, f)↦rf, such that (rr')f 

= r(r'f); r(f + f') = rf + rf'; (r + r')f = rf + r'f; 1f = f and r0F= 

0R f = 0F for all r, r'∈R and all f,  f'∈F[2]. 

    A subset A of an R-semimodule F is called a 

subsemimodule of F if for a, a' ∈A and r ∈R,  a+ a' ∈ A and 

ra ∈ A and write (   )[3]. A nonzero R-subsemimodule A 

of F is said to be essential (large) and write (A  F )if 

A∩L   0 for every nonzero subsemimodule L of F [4]. A 

subsemimodule A of a semimodule F is said to be closed if 

        implies A=A' (denoted by     ) [5].  

   A subsemimodule Z (F) of F is defined by 

Z(F)={f∈F|ann(f)    R} is said to be singular 

subsemimodule of F. If Z(F) = F, then F is called singular. 

If Z(F) = 0, then F is called nonsingular [6]. The second 

singular subsemimodule Z2(F) of F is that subsemimodule 

of F, containing Z(F), such that Z2(F)/Z(F) is the singular 

subsemimodule of F/Z(F) [7]. A subsemimodule A of F is 

said to be t-essential and write (      ) if for any  
 ,       ( ), implies     ( ). A subsemimodule C 

of F is said to be t-closed and write (       ) if 

           implies C=C'. An R- semimodule F is said 

to be t-extending if every t-closed subsemimodule of F is a 

direct summand of F. 

The paper is further organized as follows: Section 2 

studies the t-essential and t-closed subsemimodule. In 

section 3, the t-extending semimodule is introduced and 

studied, proving some of its properties. 

II. T-ESSENTIAL AND T-CLOSED SUBSEMIMODULE 

The properties of t-essential and t-closed 

subsemimodules are introducing and investigating in this 

section. Through the analysis of the structure of the t-

essential and t-closed subsemimodules, it can be observed 

that there are many properties of nonsingular and Z2-torsion 

semimodule that are also useful.  In the next, there are some 

properties of nonsingular and Z2-torsion submodule, those 

properties will be converted for the subsemimodule. 

Definition 1: A subsemimodule A of F is said to be t-

essential and write (       ) if for any   ,     
  ( ), implies     ( ). 

Definition 2: A subsemimodule C of F is said to be t-closed 

and write (      ) if            implies C=C’. 

Lemma 3: If F is nonsingular then   ( )   . 

Proof: Assume F is nonsingular, then  ( )   , since 

Z2(F)/Z(F) = Z(F/Z(F)=0, then   ( )   ( )   . 

 Note that: If F is singular then   ( )   ( )   .  

Remark 4: For any semimodule F:   

1. Every essential subsemimodule of F is t- essential. 

2. If     ( )   , then A is t- essential. 

3.  Every t-closed subsemimodule of F is closed.  

4. If     , and F is nonsingular then         
5. For each     ,        ( ) , in particular 

        ( ). 

6. F is nonsingular if and only if      .  

7.   ( )     . 

8. F/  ( ) is nonsingular. 

Proof: for (1), Clear.  
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Note that: The converse of (1) is not true. For example, in 

Z6, 〈 〉 and 〈 〉 are t-essential subsemimodules but not 

essential. 

        (2), Let      ( )   . Hence for each B with B is not 

subsemimodule of  ( ),   ( )  (   )   , then     

is not subsemimodule of    ( )(if not   ( )  (   )  
     . 

(3), assume       and let        , then by 

(1),      , but      , then A=B, and hence     .  

Note that: The converse of (3) is not true for example in 

Z6, 〈 〉  and 〈 〉are closed subsemimodules but not t-closed. 

(4), assume that      , and          , then for 

each      ,        ( )    (since F is nonsingular 

and by Lemma 3) implies  =0, that is,     , but     , 

by assumption , so A=B, and       . 

 (5), Clear. 

 (6), since      (always true), by (4),        
Conversely, assume that      , and F is not nonsingular 

then by Lemma.3    ( )   , and by (5)        ( ), a 

contradiction, hence F is nonsingular.  

 (7), assume   ( )         , let     and     ( ), 

then   ( )       ( ), contradiction, then   ( )    .   

(8), since     (  ( )    ( ))    (     ( )) , then by 

(6),      ( ) is nonsingular. 

Corollary 5: For any semimodule F,    (    ( ))     

Proof: Clear by Remark 4(8) and Lemma 3   

Definition 6: A semimodule  is said to be Z2 –torsion if 

Z2( )   . 

Lemma 7: Every singular semimodule   is Z2–torsion. 

Proof: Let   be singular semimodule, since   ( )   
   ( )   , and  ( )    , then    ( )   .  □  

Lemma 8: A subsemimodule A of F is Z2-torsion if and 

only if A    ( ). 

Proof: Suppose that   is Z2-torsion, then   ( )   , 

but   ( )    ( ), then A    ( ). 

Conversely, assume that      ( ), since by [8]   ( )  
    ( )   , therefore   is Z2-torsion . 

Lemma 9: Let   be subsemimodule of F. If   and F/   are 

Z2-torsion, then F is Z2-torsion. 

Proof: Let x ∈  , then x+  ∈ F/A, by assumption x+ 

 ∈   (   ) , then x+   + Z(F/A)∈  Z(     (   )), so 

there exists I   , such that I(x+   + Z(F/  ))=0, therefore 

I(x+  )  Z(F/  ), hence there exists J    such that (I   

J)(x+  )=0, then (I   J)(x)     =   ( ) [by 

assumption], since   ( )     ( ) then (I   J) x    ( ), 

this implies,     ( ) ∈   (    ( ) )  but by Corollary 5, 

  (    ( )   , hence x∈   ( ) , but   ( )   , then 

  ( )    and F is Z2-torsion. 

Proposition 10: If A  , and F is nonsingular then A is t-

essential if and only if A is essential in F. 

Proof: Assume that A is t-essential in F, and let   B=0, 

where B  . Since A is t-essential in F, then B   ( ), 

since F is nonsingular then by Lemma 3,    ( )    

therefore B=0, and so A is an essential in F. Conversely, 

clear by Remark 4(1).  

Note that: If F is singular then any subsemimodule of F is t-

essential. 

Proposition 11: For a subsemimodule   of F. If 

( +   ( ))    F then F/  is Z2-torsion. 

Proof: Assume that ( +    ( ))    F, then by [8], 

F/( +   ( )) is singular, and hence by Lemma 7,   (  
  ( )) is Z2-torsion. But (    ( ) )/     ( ) (  
  ( ))    ( )   ( )  is singular, hence by Lemma 7, 

 (    ( ) /   is Z2-torsion, and (   )  ((    ( ) 
 )    (    ( )) is Z2-torsion, then by Lemma 9, F/A is 

Z2-torsion. 

Proposition 12: If F/A is Z2-torsion, then A is t-essential in 

F. 

Proof: Assume that F/A is Z2-torsion, since (F/A)/Z(F/A) = 

(Z2(F/A))/(Z(F/A)) = Z((F/A)/Z(F/A)), then (F/A)/Z(F/A)is 

singular, but (F/A)/Z(F/A)  F/A*, where A*/A=Z(F/A), so 

F/A* is singular. Now let A B   ( ), and b∈B F, then 

b∈F, so b+ A*∈F/A*=Z (F/A*), then there exists I  R, such 

that I(b+ A*)=0. Therefore Ib A*, for every x∈  I, xb+A 

∈A*/A, since A*/A=  Z(F/A), then there exists K  R , such 

that K(xb+A)=0, so Kxb  A, but Kxb B, so Kxb A B 
  ( ) , thus      ( ) ∈   (    ( )) =0 hence Ib  
  ( ), so     ( ) ∈   (    ( ))  0, so  ∈   ( ), and 

hence B   ( ), so A is t-essential in F. 

   A subsemimodule B of a semimodule F is called 

complement of a subsemimodule A in F if        and B 

is a maximal with this property [5]. 

Proposition 13: If    , then the following statements are 

equivalent: 

1.    is t-essential in F. 

2.   +  ( )    F. 

3.  ( +  ( ))/  ( )        ( )  
Proof: (   )  Assume that   is t-essential in F, and B is 

a complement of   in F so  +B   F. Since   is t-essential 

in F, then B    ( ), but  + B      ( ), and  + B   F, 

therefore      ( )    F.  

(   )   Assume that  +   ( )   F since by 

[8]     ( )    F, then by [9] (  +   ( )) /   ( )      
  ( ). 

(   ) Clear by Propositions 11 and 12.  

Lemma 14: Let F and F' be semimodules and       , be 

an epimorphism. If F is Z2- torsion then F' is Z2 torsion.  

Proof: Assume that       , is an epimorphism and F is 

Z2 torsion, since F'=f (F) = f(  ( ))    (  ), therefore F' 

is Z2 torsion. 

Note that: If F is Z2- torsion, then    ( )     ( ) 
 ( ) =  (   ( ) ), therefore    ( ) is singular hence by 

Lemma 7,    ( )is Z2- torsion. 

Proposition 15: Let F be an R-semimodule. If       , 

then   ( )   .  

Proof: Assume that       , since (    ( ))   
  ( ) (     ( )), by Lemma 14, 
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(    ( ))   is Z2- torsion, hence by proposition 12, 

     (    ( )) , but      , by assumption, then  

      ( ), hence    ( )   . 

Proposition 16: For a semimodule F. If     , then 

      if and only if          . 

Proof: Assume that      , and     is not t-closed in 

F/  , then there exists          such that          

F'/   , then by Propositions 13 and 11, (    ) is Z2 

torsion, hence by Proposition 12         , a 

contradiction with the assumption that       .  
Conversely, suppose that           , and   is not t-

closed in F, then there exists     , such that        , 
then by Proposition 13,  (    ( 

 ))      hence by 

Proposition 11 F'/  is Z2 torsion, then (    )/(   ) is Z2 

torsion. By Proposition 12,            , a contradiction, 

therefore      . 

Proposition 17: Let F be an R-semimodule and    . If 

there exists subsemimodule S such that   maximal with 

respect to property that     is a Z2 torsion, then        

Proof: Suppose the property of   hold, and let         
 , then    (    )     ( ) , implies(    )     ( ) , 

therefore      is Z2 torsion, but   is maximal with this 

property then   =F', and hence        

Proposition 18: Let F be an R-semimodule and    . If 

     , then A contains    ( ),and     ( )       ( ). 

Proof: Suppose that       , then by Proposition 

15,    ( )   , now let (    ( ))   (     ( ))  
(    ( )) , then by[9],       , but by Remark 4 (3),  

    , a contradiction, hence     ( )       ( )  

Proposition 19: Let F be an R-semimodule and    . If 

  ( )   , and     ( )       ( ), then  A   . 

Proof: Suppose that      ( )       ( ) , with    ( )  
 , and let        , then by Proposition 13,   
  ( )        ( ) a contradiction, then  =F' and     . 

Proposition 20: Let F be an R-semimodule. If   ( )   , 

and     , then   is a complement of nonsingular 

subsemimodule of F. 

Proof: Let   be a complement of F' in F, hence by[8] 

   (  )       ( )   , then F' is nonsingular.   

Proposition 21`: Let F be an R-semimodule and     , 

then       if and only if F/A is nonsingular. 

Proof: It is clear by Proposition 16 and Remark 4 (6). 

   Recall that, a homomorphism R-semimodule 𝜑 ∶   ⟶   is 

said to be k- regular if 𝜑(𝑎) = 𝜑(𝑎′) then  𝑎 + 𝑘 = 𝑎′ + 𝑘′ for 

some a, a'∈A and 𝑘, 𝑘′ ∈ ker(𝜑)[10]. A subtractive 

subsemimodule  K is a subsemimodule of F such that if k, k 

+t  ∈K then t  ∈K   [11]. A semimodule F is additively 

cancellative if for all 𝑎 𝑎      𝑎   ∈         𝑎  𝑎  𝑎  
𝑎   implies 𝑎  𝑎   [10]. A semimodule F is said to be semi 

subtractive, if for any f, f'ϵ F there is always some h ϵF 

Satisfying  f + h = f ' or f ' + h = f  [2]. 

Corollary 22: For any semisubtractive and cancellative R- 

semimodule F. If     is a k- regular endomorphism of F and 

  is a t-closed subtractive subsemimodule of F, 

then      ( )     . 

Proof: Let           ( )       such that     
   ( )   ( )    [   is well defined since    
   ( )        ( ) , then             , for 

some      ∈    ( ) , then  (  )   (  )   (  )  
 (  ) , where  (  )  (  ) ∈  ,hence   (  )    
 (  )   . On other hand if  (  )     (  )   , 

then  (  )  𝑎   (  )  𝑎 , where 𝑎  𝑎 ∈    . By 

semi subtractive there exists t such that either m1+t=m2 or 

m1=m2+t. Case one: m1+t=m2, by cancellative,𝑎   ( )  
𝑎 , so by subtractive  ( ) ∈  . Case two: m1=m2+t, by 

cancellative,  ( )  𝑎  𝑎  by subtractive  ( ) ∈  , 

hence   ∈    ( ) . Therefore  (  )   ( ) =   (  )  
 ( ) , so  (    )   (    ) . Since   is k- regular, 

then       𝑘       𝑘 ) , where k, k' ∈ ker  , 

since          ( ) , hence        ( )     
   ( ) , therefore    is monomorphism hence    
    ( )    subsemimodule of F/A (which is nonsingular), 

then      ( )  is nonsingular hence by Proposition 

21,    ( )     . 

Note that: If   is closed subsemimodule of F, 

then      ( )    . 

Corollary 23: Let F be an R-semimodule. If      , 

then      ( ), if and only if   is Z2 torsion. 

Proof: Assume that       , then by Proposition  

15,     ( )   , but   is Z2 torsion implies   =  ( )    

  ( ) , then     ( ) . Conversely,     ( )  implies 

  ( )=    ( )=  , that is,   is Z2 torsion.  

Corollary 24: Let F be an R-semimodule and      , then 

  is Z2 torsion if and only if there exists a t-essential 

subsemimodule S of F for which       ( ). 

Proof: Assume that       and A is Z2 torsion, then by 

Corollary 23,      ( ) and       ( ), where F is t- 

essential subsemimodule of F. 

Conversely, assume that       , and       ( ), then 

    ( ), but by Proposition 15,    ( )   , hence   
  ( ), since by [8]    ( )      ( )   , then   is Z2 

torsion.  

Proposition 25: Let F be an R-semimodule and      . 

If      , then      . 

Proof: Assume that      , and          , then for 

each                  (  ) , implies N      ( )  , 

since   (  )    ( )  hence        , a contradiction , 

then      . 

Proposition 26: Let F be an R-semimodule and      . 

If      ,  and       then      . 

Proof: Assume that       , and       , then by 

Proposition 15,   ( )   , and   ( )   , therefore by 

Proposition 18,      ( )       ( )  and   
  ( )       ( ) , since by[8]   ( )      ( )  
  ( ) , then      ( )       ( )  and     ( )     
  ( ) , therefore by[9]     ( )       ( ) , so by 

Proposition 19      . If          , A B=0, for some 

B F', then        ( ) , hence     ( )   , then 

B=     =0, so     , contradiction     , therefore 

     . 
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Remark 27: For any semimodule F. If      and      , 

this does not lead to         . 

Note that: every module is a semimodule and every direct 

summand is closed .In [12] example 1 and 3 show that the 

intersection of two closed in F is not necessarily closed in F.  

Proposition 28: Let F be an R-semimodule if     

and       , then         . 

Proof: Assume that           , then by Propositions 

11 and 13, D/(    )is Z2 torsion, hence D/ (    ) is Z2 

torsion (since D/  (    ) is homomorphic image of 

D/ (    )  ). But D/  (    )  (    )   , therefore 

(    )    is Z2 torsion, so by Proposition 12,  '      

(    )  a contradiction, then         , and     . 

But       , then       , and so         .     

Proposition 29: Let F be a cancellative semi subtractive R-

semimodule. An arbitrary intersection of t-closed 

subtractive subsemimodule is t-closed. 

Proof: Assume that   ⋂    ∈ , where    is a t-closed 

subsemimodule of F, for any    in index set   . Let      
∏ (    ) , defined by   ↦ (    ) . If m+C=m'+C, 

then m+c1=m'+c2, where  1, 2 ∈C , hence c1, c2 ∈   , so for 

each  , (    )  (     ) ∈ ∏ (    ) , therefore     is 

well defined . Now let  (    )  (     ), then    
         , so for each   ,             , where 

      ∈    for each  ∈    By semi subtractive  there  exists 

t such that  either  m+t=m'  or m=m'+t .  

Case one: m+t=m', by cancellative,         , so by 

subtractive ∈   , hence for each      ∈  .  

Case two: m=m'+t, by cancellative,         , by 

subtractive   ∈   , hence for each      ∈  . Therefore 

m+C=m'+C, hence    is monomorphism. Since       is 

nonsingular [by Proposition 21], then  ∏ (    )  is 

nonsingular, and hence       is nonsingular. So        . 

III. T-EXTENDING SEMIMODULE 

 In this section, the t-extending semimodule is introduced 

and investigated. A number of properties of the t-extending 

semimodule are also studied by proving the equivalent 

statement to this concept. 

Definition 30: A semimodule F is said to be t-extending if 

every t-closed subsemimodule is a direct summand. 

   Recall, a semimodule F is called extending if every 

subsemimodule of F is essential in a direct summand of F. 

Equivalently, every closed subsemimodule of F is a direct 

summand of F [9]. 

Remark 31: 

1. Every Z2- torsion semimodule is t- extending. 

2. Every extending semimodule is t- extending. 

Proof:(1), Let F be Z2- torsion, then the only t- closed 

subsemimodule of F is F which is a direct summand of F, 

then F is t- extending. 

 (2), Assume F is extending and let C     , then C    

[by Remark 4(3)], since F is extending, C is a direct 

summand of F, so F is t- extending. 

Note that: For example to (2), Z6 is extending and t-

extending semimodules. But the inverse of (2) is not true. 

For example where F= 8    2, then F  is singular, hence 

each subsemimodule is t- essential, therefore F  is t- 

extending , but by [9], F is not extending.  

 

Proposition 32: Let F be an R–semimodule. If F is t-

extending then for any subsemimodule   of F,  2 is a direct 

summand whenever  2 /   = Z2(F/A ). 

Proof: Since(     )  (   ) (    )  (   )   (   ), 

then by Proposition 21               therefore by 

Proposition 16,       , since F is t- extending then    is a 

direct summand of F. 

Proposition 33: Let F be an R–semimodule. If F is t-

extending then F=   ( )   , where   is nonsingular 

extending semimodule. 

Proof: Since by Remark 4(7),    ( )     , and F is t-

extending then   ( ) is a direct summand of F , say F= 

  ( )   , for some     , hence F' is nonsingular (since 

   
 
( )    , and    

 
( ) is nonsingular ).  Let        , 

since F' is nonsingular then by Remark 4(4),        so by 
Proposition 21, F'/   is nonsingular. Since     ( )  , 

then      ( )    is nonsingular, that is    ( )      , 

therefore   ( )   is a direct summand  of F(since F is t-

extending), say  F=  ( )      , by Semi modular law[1]  
F'=   (  ( )    )    , so   is a direct summand of F', 
and F'  is extending. 

Proposition 34: Let F be a subtractive R–semimodule. If F 

is t-extending then every subsemimodule of F containing 

  ( )  is essential in a direct summand of F. 

Proof: Let     such that   ( )    , since F is t –

extending then    ( ) is a direct summand of F, say F= 

  ( )   , for some     , then by Semi modular law 

 =  ( ) (  ⋂ ) , since (  ⋂ )      and F' is extending 

by Proposition 33,  then there exists  a direct summand L of 

F', such that          for some       and 

(  ⋂ )    , therefore,   
  ( ) (  ⋂ )     ( )  , where   ( )   is a direct 

summand of F (since     ( )      ).  

Proposition 35: Let F be an R–semimodule. If F is t-

extending then every subsemimodule of F is t-essential in a 

direct summand of F. 

Proof: Let    , then by 32,    (   )      where N is 

a direct summand of F, hence     is Z2 –torsion 

since       (   )  (   )⋂  (   )     ), therefore by 

Proposition 12,        . 

Proposition 36: Let F be an R –semimodule. Then F is t-

extending if and only if for every subsemimodule A of F 

there exists a decomposition               , such that 

N is a direct summand of F, and        . 

Proof: Let   , then by Proposition 35 there exists a 

decomposition        , such that        , then 

         ((   )  ) , since   (   )  
(    ) (   )  )      , but by Propositions 11 and 

13     is Z2 torsion, so   (   )is Z2 torsion, therefore 

by Proposition 12,         , when       , hence 

       . Conversely, let       , then by assumption 

there exists a decomposition               , since 
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         , hence     is singular, and therefore 

       by Lemma 7 and Proposition 12, a contradiction , 

then   =  , and so    is a direct summand of F, that is F is 

t-extending. 

Proposition 37: Every homomorphic image of t-extending 

semimodule is t-extending. 

Proof: Let F be a t-extending semimodule. It is enough to 

show that     is t-extending for any subsemimodule   of F. 

Let        , since  F is  t-extending, then by Proposition 

35 there exists a direct summand N  of F such that    
     , for some     , and       , then by 

Propositions 13 and 11, N/L is Z2-torsion, but     
(   ) (   ) ,  then by Proposition 12,            , 

hence F/A is t- extending. 

 

     Through the previous Proposition, the following results 

can be obtained: 

Corollary 38: Every direct summand of t-extending is t-

extending. 

Proof: It is clear by Proposition 37.  

Proposition 39: Every direct sum of t-extending 

semimodule is t-extending. 

Proof: Assume that         , where F1 and F2 are t-

extending, and let         Let         be the natural 

projections from F onto   (i=1, 2), then 

     ( )     ( ), since F1 and F2 are t-extending, then 

there exists direct summand D1 and D2 of F1 and F2 

respectively, such that    ( )    ( )            , but 

        is a direct summand of F (since F1 =           and 

F2 =         , therefore        
          

  
(       )   (         ), then F is t-extending .  

   A semimodule F is said to be semisimple if it is a direct 

sum of its simple subsemimodules [13]. 

Corollary 40: Let F1 be a semisimple R- semimodule, then 

         is t-extending for any t-extending F2. 

Proof: Since F1 and F2 are t-extending then by Proposition 

39, F is t-extending.  

Proposition 41: Let          , be a nonsingular 

subtractive semimodule, then F is t-extending if and only if 

every t- closed     with K∩F1 = 0 or K∩F2 = 0 is a direct 

summand. 

Proof: ( ) Let F be t-extending, and let        , such 

that K∩F1 = 0, then by assumption, there exists a direct 

summand N of F such that       , a contradiction, then 

K=N, and similarly when K∩F2 = 0. 

( ) Let B    F then either    1=0, then by assumption 

B is direct summand of F.  Or    1   0, then there exists 

D such that                 (by [9], Proposition 10 

and Remark 4(4), then D∩F2 = 0(since           
 . Note that       by Proposition 26, then by assumption, 

D is a direct summand of F, that is,         for some 

    , by Semi modular Law,      (    )  , but 

(    ) is t-closed in F, then (    )      , also by 

assumption (    )  is a direct summand  of   , then 

   (    )     for some       , so    

  (    )           , therefore B is a direct 

summand  of F and F is t-extending. 

   A semimodule F is said to be uniform if any 

subsemimodule N of F is essential [14]. 

 Remark 42: Every semisimple (uniform) R-semimodule is 

t-extending. 

Proof: Assume F is a semisimple or uniform R–

semimodules, then F is extending R-semimodules so by 

Remark 31(2) F is t-extending. 

   A subsemimodule   of F is said to be fully invariant if 

 ( )    for each R-endomorphism f on F [15]. 

Proposition 43: Every fully invariant subsemimodule of t-

extending is t-extending. 

Proof: Let F be t-extending and N be a fully invariant 

subsemimodule of F , and let    , then    ,   since F 

is t-extending then there exists a direct summand F' of  F, 

say           such that,         , since N is a fully 

invariant then by[16],              . Clearly 

         (since       ), hence by Proposition 35, 

N is t-extending.   

IV. CONCLUSION 

This work presented the t-extending semimodule, thereby 

discussing the t-essential and t-closed properties as pre-

concepts. It is shown that in the nonsingular semimodules, 

the t-essential and essential properties are equivalent. The t-

closed property is closed under factor. For proving that the 

invers image of a t-closed subsemimodule to be t-closed, 

extra conditions were required, such as semisubtractive and 

cancellative semimodule, with subtractive subsemimodule. 

It is shown that the t-extending property is closed under 

homomorphic image (factor) hence direct summand, while 

under direct sum it needs some extra conditions.  
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