t-Extending Semimodule over Semiring

Samah Alhashemi College of Science for Women, University of Babylon, Babylon, Iraq Wsci.samah.abid@uobabylon.edu.iq https://orcid.org/0000-0002-2411-3953

Abstract—The main aim of this research is to present and study several basic characteristics of the idea of t-extending semimodules. The semimodule F is said to be a t-extending semimodule if each t-closed sub-semimodule of F is t-essential in a direct summand of F. Hence, the behavior of the textending semimodule is considered. In addition, the relationship between the t-essential (t-closed) and essential (closed) has been studied and investigated as well. Finally, in this work, there are a number of results related to the textending property, which is one of the generalizations of extending property, (every extending is t-extending, while the converse is not true).

Keywords— t-essential subsemimodule, t-closed subsemimodule, t-extending semimodule, extending semimodule, z2-torsion semimodule.

I. INTRODUCTION

In this work, the t-extending semimodule over a semiring will be introduced and investigated. Throughout this paper, *R* will denote a commutative semiring with identity, and *F* is a left *R*-semimodule. A semiring is a non-empty set *R* with two operations of addition (+) and multiplication (\cdot) such that (R, +) is a commutative monoid with identity element 0; (R, \cdot) is a monoid with identity element $1 \neq 0$; r0 = 0r = 0for all $r \in R$; a(b + c) = ab+ac and (b + c)a = ba + ca for every $a, b, c \in R$. We say that R is a commutative semiring if the monoid (R, \cdot) is commutative [1]. Let (F, +) be an additive abelian monoid with additive identity 0_{F} , then F is **R-semimodule** if there exists a scalar called a left multiplication $R \times F \longrightarrow F$ denoted by $(r, f) \mapsto rf$, such that (rr')f $= r(r'f); r(f+f') = rf + rf'; (r+r')f = rf + r'f; 1f = f \text{ and } r0_F =$ $0_R f = 0_F$ for all $r, r' \in R$ and all $f, f' \in F[2]$.

A subset A of an R-semimodule F is called a **subsemimodule** of F if for a, $a' \in A$ and $r \in R$, $a+a' \in A$ and $ra \in A$ and write $(A \leq F)[3]$. A nonzero R-subsemimodule A of F is said to be **essential** (large) and write $(A \leq {}^{e}F)$ if $A \cap L \neq 0$ for every nonzero subsemimodule L of F [4]. A subsemimodule A of a semimodule F is said to be **closed** if $A \leq {}^{e}A' \leq F$ implies A=A' (denoted by $A \leq {}^{c}F$) [5].

A subsemimodule Z (F) of F is defined by $Z(F)=\{f\in F|ann(f) \leq^{e} R\}$ is said to be singular subsemimodule of F. If Z(F) = F, then F is called singular. If Z(F) = 0, then F is called nonsingular [6]. The second singular subsemimodule $Z_2(F)$ of F is that subsemimodule of F, containing Z(F), such that $Z_2(F)/Z(F)$ is the singular subsemimodule of F/Z(F) [7]. A subsemimodule A of F is

Asaad M. A. Alhossaini College of Education for Pure Sciences, Babylon University, Babylon, Iraq asaad_hosain@itnet.uobabylon.edu.iq https//orcid.org/0000-0002-4569-3352

said to be t-essential and write $(A \leq^{tes} F)$ if for any $C \leq F$, $A \cap C \leq Z_2(F)$, implies $C \leq Z_2(F)$. A subsemimodule C of F is said to be t-closed and write $(C \leq^{tc} F)$ if $C \leq^{tes} C' \leq F$ implies C=C'. An R- semimodule F is said to be t-extending if every t-closed subsemimodule of F is a direct summand of F.

The paper is further organized as follows: Section 2 studies the t-essential and t-closed subsemimodule. In section 3, the t-extending semimodule is introduced and studied, proving some of its properties.

II. T-ESSENTIAL AND T-CLOSED SUBSEMIMODULE

The properties of t-essential and t-closed subsemimodules are introducing and investigating in this section. Through the analysis of the structure of the t-essential and t-closed subsemimodules, it can be observed that there are many properties of nonsingular and Z_2 -torsion semimodule that are also useful. In the next, there are some properties of nonsingular and Z_2 -torsion submodule, those properties will be converted for the subsemimodule.

Definition 1: A subsemimodule A of F is said to be **t**essential and write $(A \leq^{tes} F)$ if for any $C \leq F, A \cap C \leq Z_2(F)$, implies $C \leq Z_2(F)$.

Definition 2: A subsemimodule C of F is said to be **t-closed** and write $(C \leq^{tc} F)$ if $C \leq^{tes} C' \leq F$ implies C=C'.

Lemma 3: If F is nonsingular then $Z_2(F) = 0$.

Proof: Assume F is nonsingular, then Z(F) = 0, since $Z_2(F)/Z(F) = Z(F/Z(F)=0$, then $Z_2(F) = Z(F) = 0$.

Note that: If F is singular then $Z_2(F) = Z(F) = F$.

Remark 4: For any semimodule F:

- 1. Every essential subsemimodule of F is t- essential.
- 2. If $A \cap Z_2(F) = 0$, then A is t- essential.
- 3. Every t-closed subsemimodule of F is closed.
- 4. If $A \leq^{c} F$, and F is nonsingular then $A \leq^{tc} F$.
- 5. For each $A \leq F$, $0 \leq^{tes} Z_2(A)$, in particular $0 \leq^{tes} Z_2(F)$.
- 6. *F* is nonsingular if and only if $0 \leq^{tc} F$.
- 7. $Z_2(F) \leq^{tc} F$.
- 8. $F/Z_2(F)$ is nonsingular.

Proof: for (1), Clear.

Note that: The converse of (1) is not true. For example, in Z_6 , $\langle 2 \rangle$ and $\langle 3 \rangle$ are t-essential subsemimodules but not essential.

(2), Let $A \cap Z_2(F) = 0$. Hence for each B with B is not subsemimodule of $Z_2(F)$, $Z_2(F) \cap (A \cap B) = 0$, then $A \cap B$ is not subsemimodule of $Z_2(F)$ (if not $Z_2(F) \cap (A \cap B) = A \cap B \neq 0$.

(3), assume $A \leq^{tc} F$ and let $A \leq^{e} B \leq F$, then by (1), $A \leq^{tes} B$, but $A \leq^{tc} F$, then A=B, and hence $A \leq^{c} F$.

Note that: The converse of (3) is not true for example in Z_6 , (2) and (3)are closed subsemimodules but not t-closed. (4), assume that $A \leq^c F$, and $A \leq^{tes} B \leq F$, then for each $C \leq B$, $A \cap C \leq Z_2(F) = 0$ (since F is nonsingular and by Lemma 3) implies C=0, that is, $A \leq^e B$, but $A \leq^c F$, by assumption, so A=B, and $A \leq^{tc} F$.

(5), Clear.

(6), since $0 \leq^{c} F$ (always true), by (4), $0 \leq^{tc} F$. Conversely, assume that $0 \leq^{tc} F$, and F is not nonsingular then by Lemma.3 $Z_2(F) \neq 0$, and by (5) $0 \leq^{tes} Z_2(F)$, a contradiction, hence F is nonsingular.

(7), assume $Z_2(F) \leq^{tes} F' \leq F$, let $B \leq F' \text{ and } B \notin Z_2(F)$, then $Z_2(F) \cap B \leq Z_2(F)$, contradiction, then $Z_2(F) = F'$. (8), since $0 = (Z_2(F)/Z_2(F)) \leq^{tc} (F/Z_2(F))$, then by (6), $F/Z_2(F)$ is nonsingular.

Corollary 5: For any semimodule F, $Z_2(F/Z_2(F)) = 0$.

Proof: Clear by Remark 4(8) and Lemma 3.

Definition 6: A semimodule *F* is said to be Z_2 -torsion if $Z_2(F) = F$.

Lemma 7: Every singular semimodule F is Z_2 -torsion.

Proof: Let F be singular semimodule, since $Z(F) \leq Z_2(F) \leq F$, and Z(F) = F, then $Z_2(F) = F$. \Box

Lemma 8: A subsemimodule A of F is Z_2 -torsion if and only if $A \le Z_2(F)$.

Proof: Suppose that A is Z_2 -torsion, then $Z_2(A) = A$, but $Z_2(A) \le Z_2(F)$, then $A \le Z_2(F)$.

Conversely, assume that $A \leq Z_2(F)$, since by [8] $Z_2(A) = A \cap Z_2(F) = A$, therefore A is Z_2 -torsion.

Lemma 9: Let A be subsemimodule of F. If A and F/A are Z_2 -torsion, then F is Z_2 -torsion.

Proof: Let $x \in F$, then $x + A \in F/A$, by assumption $x + A \in Z_2(F/A)$, then $x + A + Z(F/A) \in Z(F/A/Z(F/A))$, so there exists $I \leq^e R$, such that I(x + A + Z(F/A)) = 0, therefore $I(x + A) \leq Z(F/A)$, hence there exists $J \leq^e R$ such that $(I \cap J)(x + A) = 0$, then $(I \cap J)(x) \leq A = Z_2(A)$ [by assumption], since $Z_2(A) \leq Z_2(F)$ then $(I \cap J) x \leq Z_2(F)$, this implies, $x + Z_2(F) \in Z_2(F/Z_2(F))$, but by Corollary 5, $Z_2(F/Z_2(F)) = 0$, hence $x \in Z_2(F)$, but $Z_2(F) \leq F$, then $Z_2(F) = F$ and F is Z_2 -torsion.

Proposition 10: If $A \le F$, and F is nonsingular then A is tessential if and only if A is essential in F.

Proof: Assume that A is t-essential in F, and let $A \cap B=0$, where $B \le F$. Since A is t-essential in F, then $B \le Z_2(F)$, since F is nonsingular then by Lemma 3, $Z_2(F) = 0$

therefore B=0, and so A is an essential in F. Conversely, clear by Remark 4(1).

Note that: If F is singular then any subsemimodule of F is t-essential.

Proposition 11: For a subsemimodule A of F. If $(A+Z_2(F)) \leq^e F$ then F/A is Z_2 -torsion.

Proof: Assume that $(A + Z_2(F)) \leq^e F$, then by [8], $F/(A+Z_2(F))$ is singular, and hence by Lemma 7, $F/(A + Z_2(F))$ is Z_2 -torsion. But $(A + Z_2(F))/A \cong Z_2(F)/(A \cap Z_2(F)) = Z_2(F)/Z_2(A)$ is singular, hence by Lemma 7, $(A + Z_2(F) / A$ is Z_2 -torsion, and $(F/A)/((A + Z_2(F)/A) \cong F/(A + Z_2(F)))$ is Z_2 -torsion, then by Lemma 9, F/A is Z_2 -torsion.

Proposition 12: If F/A is Z_2 -torsion, then A is t-essential in F.

Proof: Assume that F/A is Z_2 -torsion, since $(F/A)/Z(F/A) = (Z_2(F/A))/(Z(F/A)) = Z((F/A)/Z(F/A))$, then (F/A)/Z(F/A) is singular, but $(F/A)/Z(F/A) \cong F/A^*$, where $A^*/A = Z(F/A)$, so F/A^* is singular. Now let $A \cap B \le Z_2(F)$, and $b \in B \le F$, then $b \in F$, so $b + A^* \in F/A^* = Z(F/A^*)$, then there exists $I \le e^R$, such that $I(b + A^*) = 0$. Therefore $Ib \le A^*$, for every $x \in I$, $xb + A \in A^*/A$, since $A^*/A = Z(F/A)$, then there exists $K \le e^R$, such that K(xb + A) = 0, so $Kxb \le A$, but $Kxb \le B$, so $Kxb \le A \cap B \le Z_2(F)$, thus $xb + Z_2(F) \in Z(F/Z_2(F)) = 0$ hence $Ib \le Z_2(F)$, so $b + Z_2(F) \in Z(F/Z_2(F)) = 0$, so $b \in Z_2(F)$, and hence $B \le Z_2(F)$, so A is t-essential in F.

A subsemimodule B of a semimodule F is called *complement* of a subsemimodule A in F if $B \cap A = 0$ and B is a maximal with this property [5].

Proposition 13: If $A \le F$, then the following statements are equivalent:

1. A is t-essential in F.

- 2. $A+Z_2(F) \leq^e F$.
- 3. $(A+Z_2(F))/Z_2(F) \leq^e F/Z_2(F)$.

Proof: $(1 \Longrightarrow 2)$, Assume that A is t-essential in F, and B is a complement of A in F so $A+B \le^e F$. Since A is t-essential in F, then $B \le Z_2(F)$, but $A+B \le A+Z_2(F)$, and $A+B \le^e F$, therefore $A+Z_2(F) \le^e F$.

 $(2 \Longrightarrow 3)$, Assume that $A + Z_2(F) \le^e F$ since by [8] $Z_2(F) \le^c F$, then by [9] $(A + Z_2(F)) / Z_2(F) \le^e F / Z_2(F)$.

 $(3 \Rightarrow 1)$ Clear by Propositions 11 and 12.

Lemma 14: Let *F* and *F'* be semimodules and $f: F \to F'$, be an epimorphism. If *F* is Z₂- torsion then *F'* is Z₂ torsion.

Proof: Assume that $f: F \to F'$, is an epimorphism and F is Z_2 torsion, since $F'=f(F)=f(Z_2(F)) \subseteq Z_2(F')$, therefore F' is Z_2 torsion.

Note that: If F is Z_2 - torsion, then $F/Z(F) = Z_2(F)/Z(F) = Z(F/Z(F))$, therefore F/Z(F) is singular hence by Lemma 7, F/Z(F) is Z_2 - torsion.

Proposition 15: Let *F* be an *R*-semimodule. If $A \leq^{tc} F$, then $Z_2(F) \leq A$.

Proof: Assume that $A \leq^{tc} F$, since $(A + Z_2(F))/A \cong Z_2(F)/(A \cap Z_2(F))$, by Lemma 14,

 $(A + Z_2(F))/A$ is Z_2 - torsion, hence by proposition 12, $A \leq^{tes} (A + Z_2(F))$, but $A \leq^{tc} F$, by assumption, then $A = A + Z_2(F)$, hence $Z_2(F) \leq A$.

Proposition 16: For a semimodule *F*. If $C \le A$, then $A \le^{tc} F$ if and only if $A/C \le^{tc} F/C$.

Proof: Assume that $A \leq^{tc} F$, and A/C is not t-closed in F/C, then there exists $F'/C \leq F/C$ such that $A/C \leq^{tes} F'/C$, then by Propositions 13 and 11, (F'/A) is Z_2 torsion, hence by Proposition 12 $A \leq^{tes} F'$, a contradiction with the assumption that $A \leq^{tc} F$. Conversely, suppose that $A/C \leq^{tc} F/C$, and A is not t-closed in F, then there exists $F' \leq F$, such that $A \leq^{tes} F'$, then by Proposition 13, $(A + Z_2(F')) \leq^{e} F'$ hence by Proposition 11 F'/A is Z_2 torsion, then (F'/C)/(A/C) is Z_2 torsion. By Proposition 12, $A/C \leq^{tes} F'/C$, a contradiction, therefore $A \leq^{tc} F$.

Proposition 17: Let *F* be an *R*-semimodule and $A \le F$. If there exists subsemimodule *S* such that *A* maximal with respect to property that $S \cap A$ is a \mathbb{Z}_2 torsion, then $A \le {}^{tc} F$.

Proof: Suppose the property of A hold, and let $A \leq^{tes} F' \leq F$, then $A \cap (F' \cap S) \leq Z_2(F)$, implies $(F' \cap S) \leq Z_2(F)$, therefore $F' \cap S$ is Z_2 torsion, but A is maximal with this property then A = F', and hence $A \leq^{tc} F$.

Proposition 18: Let *F* be an *R*-semimodule and $A \le F$. If $A \le^{tc} F$, then *A* contains $Z_2(F)$, and $A/Z_2(F) \le^c F/Z_2(F)$. **Proof:** Suppose that $A \le^{tc} F$, then by Proposition 15, $Z_2(F) \le A$, now let $(A/Z_2(F)) \le^e (F'/Z_2(F)) \le (F/Z_2(F))$, then by[9], $A \le^e F'$, but by Remark 4 (3), $A \le^c F$, a contradiction, hence $A/Z_2(F) \le^c F/Z_2(F)$.

Proposition 19: Let *F* be an *R*-semimodule and $A \le F$. If $Z_2(F) \le A$, and $A/Z_2(F) \le^c F/Z_2(F)$, then $A \le^c F$.

Proof: Suppose that $A/Z_2(F) \leq^c F/Z_2(F)$, with $Z_2(F) \leq A$, and let $A \leq^e F' \leq F$, then by Proposition 13, $A/Z_2(F) \leq^e F'/Z_2(F)$ a contradiction, then A=F' and $A \leq^c F$.

Proposition 20: Let *F* be an *R*-semimodule. If $Z_2(F) \le A$, and $A \le^c F$, then *A* is a complement of nonsingular subsemimodule of *F*.

Proof: Let A be a complement of F' in F, hence by[8] $Z_2(F') = F' \cap Z_2(F) = 0$, then F' is nonsingular.

Proposition 21: Let F be an R-semimodule and $A \le F$, then $A \le^{tc} F$ if and only if F/A is nonsingular.

Proof: It is clear by Proposition 16 and Remark 4 (6).

Recall that, a homomorphism *R*-semimodule $\varphi : A \to B$ is said to be *k*- *regular* if $\varphi(a) = \varphi(a')$ then a + k = a' + k' for some a, $a' \in A$ and *k*, $k' \in ker(\varphi)[10]$. A *subtractive* subsemimodule *K* is a subsemimodule of *F* such that if *k*, *k* +*t* $\in K$ then $t \in K$ [11]. A semimodule *F* is **additively cancellative** if for all *a*, *a'* and *a''* $\in F$, with a + a' = a + a'' implies a' = a'' [10]. A semimodule *F* is said to be **semi subtractive**, if for any *f*, $f' \in F$ there is always some $h \in F$ Satisfying f + h = f' or f' + h = f [2].

Corollary 22: For any semisubtractive and cancellative *R*-semimodule *F*. If \emptyset is a k- regular endomorphism of *F* and *A* is a t-closed subtractive subsemimodule of *F*, then $\emptyset^{-1}(A) \leq^{tc} F$.

Proof: Let $\theta: F/\phi^{-1}(A) \to F/A$ such that $\theta: m +$ $\phi^{-1}(A) \rightarrow \phi(m) + A$ [θ is well defined since $m_1 +$ some $h_1, h_1 \in \emptyset^{-1}(A)$, then $\emptyset(m_1) + \emptyset(h_1) = \emptyset(m_2) +$ $\emptyset(h_2)$, where $\emptyset(h_1), \emptyset(h_2) \in A$, hence $\emptyset(m_1) + A =$ $\emptyset(m_2) + A$. On other hand if $\emptyset(m_1) + A = \emptyset(m_2) + A$, then $\emptyset(m_1) + a_1 = \emptyset(m_2) + a_2$, where $a_1, a_2 \in A$. By semi subtractive there exists t such that either $m_1+t=m_2$ or $m_1 = m_2 + t$. Case one: $m_1 + t = m_2$, by cancellative, $a_1 = \emptyset(t) + \emptyset(t)$ a_2 , so by subtractive $\phi(t) \in A$. Case two: $m_1 = m_2 + t$, by cancellative, $\phi(t) + a_1 = a_2$ by subtractive $\phi(t) \in A$, hence $t \in \emptyset^{-1}(A)$. Therefore $\emptyset(m_1) + \emptyset(t) = \emptyset(m_2) +$ $\emptyset(t)$, so $\emptyset(m_1 + t) = \emptyset(m_2 + t)$. Since \emptyset is k-regular, then $m_1 + t + k = m_2 + t + k')$, where $k, k' \in \ker \emptyset$, since $\ker \emptyset \le \emptyset^{-1}(A)$, hence $m_1 + \emptyset^{-1}(A) = m_2 + \emptyset^{-1}(A)$, therefore θ is monomorphism hence F/then $F/\emptyset^{-1}(A)$ is nonsingular hence by Proposition $21, \emptyset^{-1}(A) \leq^{tc} F.$

Note that: If A is closed subsemimodule of F, then $\emptyset^{-1}(A) \leq^{c} F$.

Corollary 23: Let F be an R-semimodule. If $A \leq^{tc} F$, then $A = Z_2(F)$, if and only if A is Z_2 torsion.

Proof: Assume that $A \leq^{tc} F$, then by Proposition 15, $Z_2(F) \leq A$, but A is Z_2 torsion implies $A = Z_2(A) \leq Z_2(F)$, then $A = Z_2(F)$. Conversely, $A = Z_2(F)$ implies $Z_2(A) = A \cap Z_2(F) = A$, that is, A is Z_2 torsion.

Corollary 24: Let *F* be an *R*-semimodule and $A \leq^{tc} F$, then *A* is Z_2 torsion if and only if there exists a t-essential subsemimodule *S* of *F* for which $A \cap S \leq Z_2(F)$.

Proof: Assume that $A \leq^{tc} F$ and A is Z_2 torsion, then by Corollary 23, $A = Z_2(F)$ and $A \cap F \leq Z_2(F)$, where F is tessential subsemimodule of F.

Conversely, assume that $S \leq^{tes} F$, and $A \cap S \leq Z_2(F)$, then $A \leq Z_2(F)$, but by Proposition 15, $Z_2(F) \leq A$, hence $A = Z_2(F)$, since by [8] $Z_2(A) = A \cap Z_2(F) = A$, then A is Z_2 torsion.

Proposition 25: Let *F* be an *R*-semimodule and $A \le N \le F$. If $A \le^{tc} F$, then $A \le^{tc} N$.

Proof: Assume that $A \leq^{tc} F$, and $A \leq^{tes} N' \leq N$, then for each $N'' \leq N'$, $A \cap N'' \leq Z_2(N')$, implies $N'' \leq Z_2(N)$, since $Z_2(N') \leq Z_2(N)$ hence $A \leq^{tes} N$, a contradiction, then $A \leq^{tc} N$.

Proposition 26: Let *F* be an *R*-semimodule and $A \le N \le F$. If $A \le^{tc} N$, and $N \le^{tc} F$ then $A \le^{tc} F$.

Proof: Assume that $A \leq^{tc} N$, and $N \leq^{tc} F$, then by Proposition 15, $Z_2(N) \leq A$, and $Z_2(F) \leq N$, therefore by Proposition 18, $A/Z_2(N) \leq^c N/Z_2(N)$ and $N/Z_2(F) \leq^c F/Z_2(F)$, since by[8] $Z_2(N) = N \cap Z_2(F) =$ $Z_2(F)$, then $A/Z_2(F) \leq^c N/Z_2(F)$ and $N/Z_2(F) \leq^c F/Z_2(F)$, therefore by[9] $A/Z_2(F) \leq^c F/Z_2(F)$, so by Proposition 19, $A \leq^c F$. If $A \leq^{tes} F' \leq F$, $A \cap B=0$, for some $B \leq F'$, then $A \cap B \leq Z_2(F)$, hence $B \leq Z_2(F) \leq A$, then $B = A \cap B = 0$, so $A \leq^e F'$, contradiction $A \leq^c F$, therefore $A \leq^{tc} F$. **Remark 27:** For any semimodule *F*. If $A \leq^{c} F$ and $A' \leq^{c} F$, this does not lead to $A \cap A' \leq^{c} F$.

Note that: every module is a semimodule and every direct summand is closed .In [12] example 1 and 3 show that the intersection of two closed in *F* is not necessarily closed in *F*. **Proposition 28**: Let *F* be an *R*-semimodule if $A \le F$ and $A' \le {}^{tc} F$, then $A \cap A' \le {}^{tc} A$.

Proof: Assume that $A \cap A' \leq^{tes} D \leq A$, then by Propositions 11 and 13, $D/(A \cap A')$ is Z_2 torsion, hence $D/(D \cap A')$ is Z_2 torsion (since $D/(D \cap A')$ is homomorphic image of $D/(A \cap A')$). But $D/(D \cap A') \cong (D + A')/A'$, therefore (D + A')/A' is Z_2 torsion, so by Proposition 12, $A' \leq^{tes} (D + A')$ a contradiction, then A' = D + A', and $D \leq A'$. But $A \cap A' \leq D$, then $D = A \cap A'$, and so $A \cap A' \leq^{tc} A$.

Proposition 29: Let F be a cancellative semi subtractive R-semimodule. An arbitrary intersection of t-closed subtractive subsemimodule is t-closed.

Proof: Assume that $C = \bigcap_{\lambda \in \Lambda} C_{\lambda}$, where C_{λ} is a t-closed subsemimodule of *F*, for any λ in index set Λ . Let θ : $F/C \rightarrow \prod_{\lambda} (F/C_{\lambda})$, defined by $m + C \mapsto (m + C_{\lambda})$. If m + C = m' + C, then $m + c_1 = m' + c_2$, where $c_1, c_2 \in C$, hence $c_1, c_2 \in C_{\lambda}$, so for each λ , $(m + C_{\lambda}) = (m' + C_{\lambda}) \in \prod_{\lambda} (F/C_{\lambda})$, therefore θ is well defined. Now let $(m + C_{\lambda}) = (m' + C_{\lambda})$, then $m + C_{\lambda} = m' + C_{\lambda}$, so for each λ , $m + c_{\lambda} = m' + c'_{\lambda}$, where $c_{\lambda}, c'_{\lambda} \in C_{\lambda}$ for each $\lambda \in \Lambda$. By semi subtractive there exists t such that either m + t = m' or m = m' + t.

Case one: m+t=m', by cancellative, $c_{\lambda} = t + c'_{\lambda}$, so by subtractive $t \in C_{\lambda}$, hence for each λ , $t \in C$.

Case two: m=m'+t, by cancellative, $c_{\lambda} + t = c'_{\lambda}$, by subtractive $t \in C_{\lambda}$, hence for each λ , $t \in C$. Therefore m+C=m'+C, hence θ is monomorphism. Since F/C_{λ} is nonsingular [by Proposition 21], then $\prod_{\lambda} (F/C_{\lambda})$ is nonsingular, and hence F/C is nonsingular. So $C \leq t^{c} F$.

III. T-EXTENDING SEMIMODULE

In this section, the t-extending semimodule is introduced and investigated. A number of properties of the t-extending semimodule are also studied by proving the equivalent statement to this concept.

Definition 30: A semimodule F is said to be t-extending if every t-closed subsemimodule is a direct summand.

Recall, a semimodule F is called *extending* if every subsemimodule of F is essential in a direct summand of F. Equivalently, every closed subsemimodule of F is a direct summand of F [9].

Remark 31:

1. Every Z_2 - torsion semimodule is t- extending.

2. Every extending semimodule is t- extending.

Proof:(1), Let F be Z_2 - torsion, then the only t- closed subsemimodule of F is F which is a direct summand of F, then F is t- extending.

(2), Assume F is extending and let $C \le {}^{tc} F$, then $C \le {}^{c} F$ [by Remark 4(3)], since F is extending, C is a direct summand of F, so F is t- extending.

Note that: For example to (2), Z_6 is extending and textending semimodules. But the inverse of (2) is not true. For example where $F = \mathbb{Z}_8 \bigoplus \mathbb{Z}_2$, then F is singular, hence each subsemimodule is t- essential, therefore F is textending, but by [9], F is not extending.

Proposition 32: Let *F* be an *R*-semimodule. If *F* is textending then for any subsemimodule *A* of *F*, A_2 is a direct summand whenever $A_2/A = Z_2(F/AA)$.

Proof: Since $(F/A_2) \cong (F/A)/(A_2/A) = (F/A)/Z_2(F/A)$, then by Proposition 21 $A_2/A \leq^{tc} F/A$ therefore by Proposition 16, $A_2 \leq^{tc} F$, since F is t- extending then A_2 is a direct summand of F.

Proposition 33: Let *F* be an *R*-semimodule. If *F* is textending then $F = Z_2(F) \oplus F'$, where *F'* is nonsingular extending semimodule.

Proof: Since by Remark 4(7), $Z_2(F) \leq^{tc} F$, and F is textending then $Z_2(F)$ is a direct summand of F, say $F=Z_2(F)\oplus F'$, for some $F' \leq F$, hence F' is nonsingular (since $F/Z_2(F) \cong F'$, and $F/Z_2(F)$ is nonsingular). Let $C \leq^c F'$, since F' is nonsingular then by Remark 4(4), $C \leq^{tc} F'$ so by Proposition 21, F'/C is nonsingular. Since $C \leq Z_2(F)\oplus C$, then $F'/Z_2(F)\oplus C$ is nonsingular, that is $Z_2(F)\oplus C \leq^{tc} F$, therefore $Z_2(F)\oplus C$ is a direct summand of F(since F is textending), say $F=Z_2(F)\oplus C\oplus F''$, by Semi modular law[1] $F'=C \oplus (Z_2(F)\oplus F'') \cap F'$, so C is a direct summand of F', and F' is extending.

Proposition 34: Let *F* be a subtractive *R*-semimodule. If *F* is t-extending then every subsemimodule of *F* containing $Z_2(F)$ is essential in a direct summand of *F*.

Proof: Let $A \leq F$ such that $Z_2(F) \leq A$, since F is t – extending then $Z_2(F)$ is a direct summand of F, say $F=Z_2(F)\oplus F'$, for some $F' \leq F$, then by Semi modular law $A=Z_2(F)\oplus (F'\cap A)$, since $(F'\cap A) \leq F'$ and F' is extending by Proposition 33, then there exists a direct summand L of F', such that $F' = L \oplus F''$ for some $F'' \leq F'$ and $(F'\cap A) \leq^e L$, therefore, $A = Z_2(F) \oplus (F'\cap A) \leq^e Z_2(F) \oplus L$, where $Z_2(F) \oplus L$ is a direct summand of F (since $F = Z_2(F) \oplus L \oplus F''$).

Proposition 35: Let F be an R-semimodule. If F is t-extending then every subsemimodule of F is t-essential in a direct summand of F.

Proof: Let $A \leq F$, then by 32, $Z_2(F/A) = N/A$ where N is a direct summand of F, hence N/A is Z_2 _torsion since $Z_2(N/A) = (N/A) \cap Z_2(F/A) = N/A$, therefore by Proposition 12, $A \leq^{tes} N$.

Proposition 36: Let *F* be an *R* –semimodule. Then *F* is t-extending if and only if for every subsemimodule *A* of *F* there exists a decomposition $F/A = N/A \oplus N'/A$, such that *N* is a direct summand of *F*, and $N' \leq^{tes} F$.

Proof: Let $A \leq F$, then by Proposition 35 there exists a decomposition $F = N \oplus L$, such that $A \leq^{tes} N$, then $F/A = N/A \oplus ((L \oplus A)/A)$, since $F/(L \oplus A) \cong (F/A)/(L \oplus A)/A) \cong N/A$, but by Propositions 11 and 13, N/A is Z_2 torsion, so $F/(L \oplus A)$ is Z_2 torsion, therefore by Proposition 12, $L \oplus A \leq^{tes} F$, when $N' = L \oplus A$, hence $N' \leq^{tes} F$. Conversely, let $A \leq^{tc} F$, then by assumption there exists a decomposition $F/A = N/A \oplus N'/A$, since

 $F/N' \cong N/A$, hence N/A is singular, and therefore $A \leq^{tes} N$ by Lemma 7 and Proposition 12, a contradiction, then A = N, and so A is a direct summand of F, that is F is t-extending.

Proposition 37: Every homomorphic image of t-extending semimodule is t-extending.

Proof: Let *F* be a t-extending semimodule. It is enough to show that *F*/*A* is t-extending for any subsemimodule *A* of *F*. Let $L/A \leq F/A$, since *F* is t-extending, then by Proposition 35 there exists a direct summand *N* of *F* such that $F = N \oplus F'$, for some $F' \leq F$, and $L \leq^{tes} N$, then by Propositions 13 and 11, *N/L* is Z₂-torsion, but $N/L \cong (N/A)/(L/A)$, then by Proposition 12, $L/A \leq^{tes} N/A$, hence *F/A* is t-extending.

Through the previous Proposition, the following results can be obtained:

Corollary 38: Every direct summand of t-extending is t-extending.

Proof: It is clear by Proposition 37.

Proposition 39: Every direct sum of t-extending semimodule is t-extending.

Proof: Assume that $F = F_1 \oplus F_2$, where F_1 and F_2 are textending, and let $A \leq^{tc} F$. Let $\pi_i: F \to F_i$ be the natural projections from F onto F_i (i=1, 2), then $A = \pi_1(A) \oplus \pi_2(A)$, since F_1 and F_2 are t-extending, then there exists direct summand D_1 and D_2 of F_1 and F_2 respectively, such that $\pi_1(A) \oplus \pi_2(A) \leq^{tes} D_1 \oplus D_2$, but $D_1 \oplus D_2$ is a direct summand of F (since $F_1 = D_1 \oplus D_1'$ and $F_2 = D_2 \oplus D_2'$, therefore $F = D_1 \oplus D_1' \oplus D_2 \oplus D_2' = (D_1 \oplus D_2) \oplus (D_1' \oplus D_2')$, then F is t-extending.

A semimodule F is said to be *semisimple* if it is a direct sum of its simple subsemimodules [13].

Corollary 40: Let F_1 be a semisimple *R*- semimodule, then $F = F_1 \oplus F_2$ is t-extending for any t-extending F_2 .

Proof: Since F_1 and F_2 are t-extending then by Proposition 39, F is t-extending.

Proposition 41: Let $F = F_1 \oplus F_2$, be a nonsingular subtractive semimodule, then *F* is t-extending if and only if every t- closed $K \le F$ with $K \cap F_1 = 0$ or $K \cap F_2 = 0$ is a direct summand.

Proof: (\Rightarrow) Let *F* be t-extending, and let $K \leq^{tc} F$, such that $K \cap F_1 = 0$, then by assumption, there exists a direct summand *N* of *F* such that $K \leq^{tes} N$, a contradiction, then K=N, and similarly when $K \cap F_2 = 0$.

(⇐) Let $B \le^{tc} F$ then either $B \cap F_1=0$, then by assumption *B* is direct summand of *F*. Or $B \cap F_1 \ne 0$, then there exists *D* such that $B \cap F_1 \le^{tes} D \le^{tc} B$ (by [9], Proposition 10 and Remark 4(4), then $D \cap F_2 = 0$ (since $B \cap F_1 \cap D \cap F_2 = 0$. Note that $D \le^{tc} F$ by Proposition 26, then by assumption, *D* is a direct summand of *F*, that is, $F = D \oplus D'$ for some $D' \le F$, by Semi modular Law, $B = D \oplus (B \cap D')$, but $(B \cap D')$ is t-closed in *F*, then $(B \cap D') \cap F_2 = 0$, also by assumption $(B \cap D')$ is a direct summand of *D'*, then $D' = (B \cap D') \oplus D''$ for some $D'' \le D'$, so F = D' $D \oplus (B \cap D') \oplus D'' = B \oplus D''$, therefore *B* is a direct summand of *F* and *F* is t-extending.

A semimodule F is said to be **uniform** if any subsemimodule N of F is essential [14].

Remark 42: Every semisimple (uniform) *R*-semimodule is t-extending.

Proof: Assume F is a semisimple or uniform R-semimodules, then F is extending R-semimodules so by Remark 31(2) F is t-extending.

A subsemimodule A of F is said to be *fully invariant* if $f(A) \subseteq A$ for each R-endomorphism f on F [15].

Proposition 43: Every fully invariant subsemimodule of textending is t-extending.

Proof: Let F be t-extending and N be a fully invariant subsemimodule of F, and let $A \leq N$, then $A \leq F$, since F is t-extending then there exists a direct summand F' of F, say $F = F' \oplus F''$ such that, $A \leq^{tes} F'$, since N is a fully invariant then by[16], $N = N \cap F' \oplus N \cap F''$. Clearly $A \leq^{tes} N \cap F'(\text{since} N \cap F' \leq F')$, hence by Proposition 35, N is t-extending.

IV. CONCLUSION

This work presented the t-extending semimodule, thereby discussing the t-essential and t-closed properties as preconcepts. It is shown that in the nonsingular semimodules, the t-essential and essential properties are equivalent. The tclosed property is closed under factor. For proving that the invers image of a t-closed subsemimodule to be t-closed, extra conditions were required, such as semisubtractive and cancellative semimodule, with subtractive subsemimodule. It is shown that the t-extending property is closed under homomorphic image (factor) hence direct summand, while under direct sum it needs some extra conditions.

ACKNOWLEDGMENT

Thanks to the Department of Mathematics-College of Education for Pure Sciences-University of Babylon. The paper is a part of the first author's Ph.D. dissertation under the supervision of Prof. Dr. Asaad M. A. Alhossaini.

REFERENCES

- [1] J. S. Golan, *Semirings and their Applications*. Kluwer Academic Publishers, Dordrecht, 1999.
- [2] J. R. Tsiba, "On Generators and Projective Semimodules," *Int. J. Algebr.*, vol. 4, no. 24, pp. 1153–1167, 2010.
- [3] A. H. Alwan and A. M. A. Alhossaini, "Endomorphism Semirings of Dedekind Semimodules," *Int. J. Adv. Sci. Technol.*, vol. 29, no. 4, pp. 2361–2369, 2020.
- [4] K. Pawar, "A Note on Essential Subsemimodules," New Trends Math. Sci., vol. 1, no. 2, pp. 18–21, 2013.
- [5] M.T. Altaee and A.M.Alhossaini, "П-Injective

Semimodule over Semiring," *Solid State Technol.*, vol. 63, no. 5, pp. 3424--3433, 2020.

- [6] S.H. A. Alsaebari and A. M. A. Alhossaini, "On Preradical of Semimodules," *Baghdad Sci. J.*, vol. 15, no. 4, pp. 472–478, 2018.
- T. K. Dutta and M. L. Das, "Singular Radical in Semiring," *Southeast Asian Bull. Math.*, vol. 34, no. 3, pp. 405–416, 2010.
- [8] S. Alhashemi and A. M. A.Alhossaini, "Extending semimodules and singularity," in *Journal of Physics: Conference Series(in publication)*, pp. 1– 7.
- [9] S. Alhashemi and A. M. A. Alhossaini, "Extending Semimodules over Semirings," in *Journal of Physics: Conference Series*, 2021, vol. 1818, no. 1, pp. 1–7, doi: 10.1088/1742-6596/1818/1/012074.
- [10] S. H. A. Alsaebari and A. M. A. Alhossain, "Nearly Injective Semimodules," J. Univ. Babylon, Pure Appl. Sci., vol. 27, no. 1, pp. 11–31, 2019, doi: 10.29196/jubpas.v27i1.2062.
- [11] J. N. Chaudhari and D. R. Bonde, "On Exact Sequence of Semimodules over Semirings," *Int. Sch. Res. Not.*, vol. 2013, no. 1, pp. 1–5, 2013.
- [12] M. Alkan and A. Harmanci, "On summand sum and summand intersection property of modules," *Turkish J. Math.*, vol. 26, no. 2, pp. 131–147, 2002.
- [13] J. Abuhlail and R. G. Noegraha, "On Semisimple Semirings," *Commun. Algebr.*, vol. 49, no. 13, pp. 1–26, 2021.
- [14] K. S. H. Aljebory and A. M. A. Alhossaini, "Principally Pseudo-Injective Semimodule," J. Univ. Babylon Pure Appl. Sci., vol. 27, no. 4, pp. 121–127, 2019.
- [15] H.A.AL-Ameer and A. M.A.Alhossaini, "Fully Stable Semimodules," *Albahir J.*, vol. 5, no. 10, pp. 13–20, 2017.
- [16] A. M. A. Alhossaini and Z. A. H. Aljebory, "On Pduo Semimodules," J. Univ. Babylon, Pure Appl. Sci., vol. 26, no. 4, pp. 27–35, 2018.