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Abstract – Radiological diagnostics are undeniably 
crucial in everyday healthcare. CT scans can 
sometimes provide misleading clues and delay 
successive treatment due to artifacts caused by 
reflected radiation from metallic implants. This work 
successfully segments multiple organs containing 
metal implants and discards artifacts using a 
combination of non-rigid transformations, Scribbles-
based segmentation, and a pre-trained auto 
segmentation model (DynaUnet -Pretrained-Model). 
The presented transfer learning model combined the 
benefits of an interactive environment and reduced 
computational and processing-time costs. The transfer 
learning model proved high auto segmentation 
performance for multi-organs with metal implants' 
presence by decreasing metal artefact's impact on the 
segmentation process and the achieved segmentation 
accuracies between 0.9998 for the spleen and 0.9829 
for the stomach. 
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1. Introduction

Radiation therapy is widely used to treat cancer, 
and it entails exposing the patient to high levels of 
radiation that kill cancer cells while causing 
minimal harm to healthy tissue. Radiation debris, 
however, can compromise the efficacy of a therapy 
plan for patients with metal implants, such as those 
used for joint replacements or tooth restorations [1], 
[2], [3]. 3D medical segmentation requires precisely 
dividing the image into various areas to recognise 
the metal device and nearby tissue. This work will 
study the impact of 3D medical segmentation in 
eliminating radioactive metal implant artifacts. 
Accurately identifying the metal implant and 
surrounding tissue using 3D medical segmentation 
may minimise radiation artifacts and allow for more 
precise treatment planning. Accurately placing the 
metal implant can also help improve the dose 
calculation accuracy, which is essential in delivering 
an effective treatment [9], [10]. Three-dimensional 
medical segmentation also has the benefit of 
revealing details about the patient's anatomy that can 
help identify the location of critical structures, such 
as organs at risk, that reduce the risk of damaging 
healthy tissue during radiation therapy. The detailed 
information provided by 3D medical segmentation 
can also help improve the treatment plan's accuracy 
by allowing for more precise targeting of the cancer 
cells [11], [12]. Medical imaging has become an 
integral component of contemporary medicine. 
Radiographs, CT scans, MRI scans, and other 
imaging modalities and ultrasonography are all 
examples of medical imaging methods.  
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While these methods are beneficial, they do have 
some restrictions. The existence of metal devices, 
which can create artifacts and conflict with the 
precision of the images, is one of the most 
significant drawbacks of medical imaging. Metal 
artifacts can be produced by various variables, such 
as the type of metal, the size and form of the device, 
and its direction concerning the imaging plane. This 
article will examine how 3D medical segmentation 
can be used to address the issues caused by radiation 
on metal implants. Image deformation, signal loss, 
and line artifacts are issues that can arise from metal 
implant artifacts. Beam stiffening artifacts, visible in 
CT images as lines or colouring, are caused by metal 
devices. Medical segmentation is dividing an image 
into different areas based on its content [7], [8]. 3D 
medical segmentation is a technique that uses 
advanced algorithms to segment medical images in 
three dimensions. This technique effectively 
separates other tissues and structures in the body, 
allowing clinicians to analyse the data more 
accurately [13]. Overcoming metal implant artefacts 
in medical imaging with the help of 3D medical 
segmentation has been proven to be a successful 
strategy. Clinicians can get more trustworthy 
information by segmenting the images and removing 
the metal artifacts that can help diagnose and treat 
various diseases and illnesses, such as cancer, heart 
disease, and neurological issues. Removing metal 
device traces and giving doctors more accurate and 
dependable data are two ways 3D medical 
segmentation can solve these obstacles. Because of 
this, doctors will be able to keep an eye on a 
patient's condition with greater precision and handle 
them more efficiently. Having metal devices in the 
body can introduce various artefacts into diagnostic 
imaging [14], [15]. Streaks, reflections, and other 
distortions are examples of artifacts that make it 
challenging to acquire a precise image. Many 
methods have been presented for decreasing the size 
of metal artifacts. Iterative reconstruction algorithms 
are one of these methods presented by [11]. This 
technique applied iterative methods to reduce 
artifacts caused by metal implants. It works by 
simultaneously estimating the image data and the 
metal location and then updating the estimate 
iteratively until the artifact is diminished. Dual-
energy CT applied two X-ray energies to 
differentiate between high-attenuating materials like 
metal and low-attenuating materials like soft tissue 
to reduce metal artifacts in CT images [12]. Virtual 
monochromatic imaging applies advanced 
algorithms to reconstruct images with a single 
energy level to reduce metal artifacts caused by 
beam hardening [13]. However, these techniques 
may not always effectively reduce metal artifacts, 
especially with large metal implants.  

Figure 1 explains CT scan image of an organ with 
and without the presence of a metal artifact. The 
organ CT scan image is compared in the presence of 
metal artifact and not. Where A refers to an organ 
with a metal implant and its artifact, and B refers to 
the same original organ image without a metal 
implant.   

 

 
 

Figure 1.CT scan images of an organ with (image A) and 
without the presence of a metal artifact (image B). 

Artificial intelligence and deep learning 
techniques are widely recognized as highly 
advanced methodologies that effectively mitigate 
the influence of metal artifacts. These techniques 
involve training computer systems to identify and 
eliminate artifacts impact by utilizing mathematical 
procedures in the field of image processing to 
accurately define these artifacts' features. Many 
works in literature are found on MAR in radiology 
images using deep learning and medical image 
processing algorithms. Most approaches worked in 
correcting artifacts on a two-dimensional level by 
applying image processing algorithms to decrease or 
eliminate artifacts radiation. Recent publications 
have presented solutions to the challenges in MAR, 
inspired by the successes of deep learning in 
handling challenging issues related to MA reduction  
[17], [18]. The CT image domain metal artifact was 
reduced by Wang et al. [19], [16] by applying the 
pix2pix model. U-Net was used by Park et al. [20] to 
fix sinograms that had been tainted by metal 
directly. Although these deep learning techniques 
help diminish metal artifacts, their high expressive 
power means that neither image nor sinogram 
domain enhancement can fully restore metal 
shadows and secondary artifacts meaningless 
without using deep learning. To improve CT scans, 
the authors of [1] presented a fully trainable Dual 
Domain Network (DuDoNet), which trains two 
convolutional neural networks (CNNs) on dual 
domains for MA reduction. Researchers in [4] used 
CGAN deep learning method to generate projections 
of CT images without the metal artifacts. Then, they 
reconstructed the original sinogram images by 
adding the metal implants and subtracting the 
artifacts labels.  
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Kyu Song et al. [5] studied the best MAR 
radiation protocols to decrease metal artifacts for 
different organ scans and the effect of the dosimetry 
and projection angles using a phantom model. Also, 
Nicholas Keat, and Julia F. Barrett [6], studied 
radiation detection and avoidance protocols for 
MAR. There were spiral and multi-section method 
artifacts in the reconstructed images. Some artifacts 
are reduced by the scanner's software and by design 
features built into CT scanners. They concluded that 
the two most essential variables in preventing CT 
artifacts were cautious patient posture and the 
optimal selection of scanning settings. 

2. Methods and Materials 

This study presented various methods to reduce 
the influence of metal artifacts on the segmentation 
process in order to achieve an ideal auto segmention 
model for multiple organs  in the presence of metal 
implants. These methods included 3D medical 
segmentation and 3D registration that integrated 
with supervised learning to achieve this work main 
objective. The subsequent sections will provide a 
comprehensive explanation of these methods. 

2.1. 3D Medical Segmentation 

The process of 3D medical segmentation typically 
involves several steps. These steps include a pre-
processing stage of preparing the medical image for 
segmentation, which refers to the first step. The pre-
processing stage may involve removing noise, 
enhancing contrast, or adjusting the image intensity. 
Second, the exact area of the image where the metal 
implant is may be identified by using the Region of 
Interest (ROI) tool. This step is typically done 
manually by a radiologist or medical technician. 
Third, the segmentation stage involves using 
algorithms to separate the metal implant from the 
surrounding tissue. This step can be done using 
various techniques, including thresholding, region 
growing, or active contours. Lastly, post-processing 
involves refining the segmentation results to 
improve accuracy. It may include the removal of 
minor artifacts or the filling of image gaps [21].  

2.2.  3D Registration 

Multiple three-dimensional datasets must be 
aligned to a standard coordinate system for 3D 
registration to succeed [22]. Various medical 
imaging applications require it, including metal 
artifact reduction (MAR). Metal artefacts may 
severely degrade CT and MRI images, making 
precise diagnosis and treatment planning 
challenging.  

By processing raw image data, MAR requires 
reducing metal artifacts to produce an anatomically 
accurate patient representation. Using 3D 
registration techniques to align pre and 
postoperative patient scans is one approach to MAR. 
This method utilises the pre-operative scan as a 
reference and aligns the postoperative scan. 
Considering the presence of metal artifacts, the 
registration procedure entails locating the 
transformation that transfers the postoperative scan 
onto the pre-operative scan. The aligned 
postoperative scan can reconstruct an image of the 
patient's anatomy without artifacts [23]. Multiple 3D 
registration strategies, such as intensity-based, 
feature-based, and hybrid approaches, may be used 
in MAR. Images are aligned using intensity values 
in intensity-based processes. 

On the other hand, image alignment using feature-
based strategies relies on unique image 
characteristics like corners and edges. Hybrid 
approaches use intensity-based and feature-based 
techniques to enhance registration precision [24]. 
Non-rigid registration is a technique that allows for 
the alignment of images with deformable structures 
such as the human body. It is a valuable technique 
for Metal Artifact Reduction (MAR) because metal 
implants can cause significant distortions in 
surrounding tissues. Non-rigid registration 
techniques can account for these distortions and help 
reduce metal artifacts. Non-rigid segmentation 
identifies and separates regions of interest in an 
image with non-linear or deformable boundaries. 
One common approach to non-rigid segmentation is 
to use a deformable model, such as a level set or 
active contour, that evolves to fit the edges of the 
desired regions. The mathematical equation for a 
level set deformable model is: 

 
𝜕𝜑
𝜕𝑡

+∝ 𝜑|(𝛻𝜑)|(𝑘 − 𝛿) = 0 … … … … … (1) 
 

Where φ refers to the level set function, t is time, 
α refers to a parameter that controls the speed of the 
level set propagation. ψ is a function that penalises 
the length of the level set curve, |∇φ| is the 
magnitude of the gradient of φ, κ is the curvature of 
the level set curve, and δ is a function that penalises 
the deviation of φ from a signed distance function 
[25]. Region growing and thresholding are two 
image segmentation techniques that can be used 
with non-rigid registration to reduce metal artifacts. 
Region growing involves selecting a seed point in 
the image and iteratively adding neighbouring pixels 
that meet specific criteria until an entire region is 
formed.  
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Thresholding is a straightforward image 
segmentation method that divides an image into 
regions depending on the intensity levels of its 
respective pixels. Thresholding consists in setting a 
threshold value for pixel intensity and assigning all 
pixels above that threshold to a particular part. All 
pixels with intensity values above or below the 
threshold are labelled foreground or background. 
The mathematical equation for thresholding is: 

      𝑇(𝑥,𝑦)  =  1, 𝑖𝑓 𝐼(𝑥,𝑦)  >  𝑇 =  0 …..(2) 
       

Where T is the threshold value, I(x, y) is the 
intensity value of the pixel at location (x, y), and 
T(x, y) is the resulting label of the pixel at location 
(x, y) [24]. 

 Scribbles-based registration is another approach 
that involves the user drawing scribbles on the 
image to indicate the areas that should be aligned. 
The scribbles guide the registration algorithm, 
allowing it to focus on the most critical regions for 
reducing metal artifacts. Growing from seed 
registration is another technique that involves 
selecting one or more seed points in the image and 
adding neighbouring pixels, most like the seed 
points, until a whole region is formed. This 
technique can help align images with deformable 
structures, such as the human body, by focusing on 
the most critical areas for reducing metal artifacts. 
Overall, non-rigid registration, region growing, 
thresholding, scribbles-based, and growing from 
seed registration are all effective techniques for 
reducing metal artifacts in medical imaging. 
Combining these techniques makes it possible to 
obtain a more accurate representation of the patient's 
anatomy, even in the presence of metal implants. 

 Atlasing refers to mapping different images to a 
standard coordinate system or space. Atlasing has 
typically been done to facilitate comparisons and 
analyses across other images, such as in medical 
imaging or neuroscience [26]. The mathematical 
equations for atlasing depend on the specific method 
used to achieve image alignment and registration. 
Here are a few standard techniques and their 
associated equations: 

 
1- Affine transformation: Affine transformations 
involve a combination of translation, rotation, 
scaling, and shearing operations to align images. 
The mathematical equation for an affine 
transformation can be expressed as [27]: 
 

     𝑇(𝑥)  =  𝐴𝑥 +  𝑏……………………….(3) 
 

T(x) is the transformed image coordinate, A is a 
3x3 matrix that describes the linear transformation, 
x is the original image coordinate, and b is a 3x1 
vector representing the translation [28]. 

2- non-rigid registration: non-rigid registration 
techniques allow for more flexible and deformable 
transformations of images, which can help align 
images with complex or non-linear deformations. 
One common approach to non-rigid registration is to 
use a deformation field, which describes the 
displacement of each pixel in the moving image to 
its corresponding location in the fixed image. The 
mathematical equation for a deformation field can 
be expressed as: 
 

    𝑢(𝑥)  =  𝑥 −  𝜑(𝑥) ……………………(4) 
 

Where u(x) is the displacement vector at pixel 
location x, and φ(x) is the deformation field that 
maps each pixel in the moving image to its 
corresponding location in the fixed image [29]. 

 
3-Intensity-based registration: Intensity-based 
registration methods aim to align images based on 
the similarity of their intensity values. One common 
approach to intensity-based registration uses a cost 
function that measures the similarity between the 
intensities of the moving and fixed images. The 
mathematical equation for a cost function can be 
expressed as: 
 
𝐶 =  𝛴�𝛼𝑓(𝑥) −  𝛽𝑚�𝑇(𝑥)��2………………(5) 
 

Where f(x) refers to the fixed image intensity at a 
specific pixel position, x, m (T(x)) refers to the 
power of the moving image after applying a 
transformation T(x). α and β are scaling factors, and 
Σ is the sum of all pixel locations. These equations 
provide a basic overview of some mathematical 
concepts involved in atlasing. However, the 
specifics of atlasing depend heavily on the 
application and the algorithms and methods used 
[30]. 

 
2.3.  Metal Artifact Reduction (MAR) Using 

Supervised Learning 
 

Supervised learning techniques, such as deep 
learning, have shown promising results for metal 
artifact reduction (MAR) in medical imaging. These 
techniques involve training a model using labelled 
data to learn the relationship between input images 
and their corresponding artifact-free images. 3D 
segmentation is often used in supervised learning for 
MAR to identify and segment image areas 
containing metal artifacts. Several registration tools 
can be used with 3D segmentation for supervised 
learning in MAR. 3D slicer is a comprehensive 
software platform for medical image analysis that 
includes image registration, segmentation, and 
visualisation tools.  
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It also provides a user-friendly interface for 
training and testing deep learning models. The 
accuracy of deep learning models for MAR may be 
improved by using these registration techniques with 
3D segmentation capabilities to pre-process the 
medical images for supervised learning. 

Regarding medical image annotation and deep 
learning, MONAI Label is the get-it-to open-source 
platform [31]. It offers a straightforward method for 
medical image annotation and creating deep learning 
model training data. In addition, it has transfer 
learning-ready models that have already been 
trained. DynaUNet is a pre-trained deep-learning 
model that relies on the U-Net architecture applied 
to perform image segmentation in medical 
applications. This model is trained using a 
substantial medical images dataset and can be fine-
tuned on a smaller dataset for a specific 
segmentation task. Researchers may reuse a learned 
model for a new study using the transfer learning 
approach, which entails training on a smaller 
dataset.  

MONAI Label and DynaUNet can apply a transfer 
learning strategy to analyse medical images. For 
example, it was annotating an entirely new set of 
medical images using MONAI Label and then using 
DynaUNet as a basis for training a novel 
segmentation model. When introducing a new 
model, transfer learning can lessen the amount of 
labelled data needed and boost the model's 
performance on the new dataset [5]. 
 
2.3.1.  Active Learning Strategies with Transfer 

Learning 
 

In MONAI Label, scribbles are an example of 
free-form line drawing used for low-intensity 
interactions between scribble-based models. The 
first model uses scribbles as a method of producing 
segmentation labels [31], [6]. Labels inferred by a 
deep learning model may be improved using 
scribbles-based refinement model as can be seen in 
Figure 2. 
      

 
 

Figure 2. Block diagram of our transfer learning method with MONAI label 
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Figure 3 explains our complete 3D segmentation, 
gathering different algorithms using 3DSlicer, 
MONAI Label, auto segmentation for multi organs, 
atlasing and thresholding for Metal, Full organs 3D 
shapes segmented with non-rigid registration of 

grow from seed and atlasing through active learning. 
Figure 4 shows the refinement of the complete 
segmentation organ (stomach here) specific 
segmentation with scribbles and transfer learning. 
 

 

 
 

Figure 3. Full 3D segmentation 
 

 
 

Figure 4. Refinement of complete segmentation of 
stomach organ with scribbles and transfer learning 

 
DynUnet is a deep-learning model architecture 

that can be trained for various image-processing 
tasks, such as segmentation, registration, and 
reconstruction. The mathematical equations for 
DynUnet would depend on the specific 
implementation details and training data used. 
However, the basic architecture of DynaUnet 
involves convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) to perform spatial 
and temporal processing of image data. The 
mathematical equations for the CNN and RNN 
components of DynUnet are as follows [9]:     
  𝐶𝑁𝑁: 𝑦 =  𝑓(𝑊𝑥 +  𝑏) ...……………….…(6)           

Where x is the input image data, W and b are the 
weight and bias matrices of the CNN, and f is a non-
linear activation function [32], [33]. 

 
𝑅𝑁𝑁: ℎ𝑡 =  𝑔(𝑊𝑖 ∙ ℎ𝑡−1 +  𝑊𝑖 ∙ 𝑥𝑡 + 𝑏)……..(7) 
 

Where ht is the hidden state at time t, Wi .h and 
Wi .x are the weight matrices of the RNN, b is the 
bias vector, and g is a non-linear activation function 
[33], [34]. 

In this work, MONAI Label and DynaUNet have 
been applied as a transfer learning strategy to 
analyse our MAR medical images dataset.  

 



TEM Journal. Volume 12, Issue 3, pages 1342-1353, ISSN 2217-8309, DOI: 10.18421/TEM123-14, August 2023. 

1348                                                                                                                          TEM Journal – Volume 12 / Number 3 / 2023. 

The process involved annotating an entirely new 
set of medical images using MONAI Label and then 
using DynaUNet as a basis for training a novel 
segmentation model. When introducing a new 
model, transfer learning can lessen the amount of 
labelled data needed and boost the model's 
performance on the new dataset. Transfer learning 
segmentation outcomes compared with 
TotalSegmentator reference pre-trained 
segmentation model. 

The segmentation performs using the transfer 
Learning segmentation method based on the 
annotated ROI. Similarly, the TotalSegmentator pre-
trained model was used to perform segmentation on 
the same ROI. Both segmentations have been 
exported in a DICOM standard format. 
 
2.3.2.  Model Configuration and MAR Dataset  

The 104 whole-body structures in the 
TotalSegmentator datasets serve as the training set 
[35]. Large volumes of structures in CT scans are a 
problem for TotalSegmentator. Voxel-wise multi-
label segmentation is used to divide up 104 different 
types of tissue. The gradient descent approach 
improves the model by minimising the Dice cross-
entropy loss between the model's predicted mask 
and the ground truth segmentation. The 32 GB of 
GPU memory was used for the training. The actual 
input to the model is 96 by 96 by 96. The learning 
rate is 1e-4, and Adam is the optimiser. Label 0 was 
selected as the background category (everything 
else), while labels 1-105 were selected as 
foreground classes (105) in a CT picture where the 
loss function was a dice loss. The gradient descent 
approach improves the model by reducing the 
difference in dice cross-entropy between the trained 
model's predicted mask and the ground-truth 
segmentation.  

Before using the bundle, it needs to download the 
data and combine all the annotated labels into a 
single NIFTI file. The bundle with MONAI Label 
has been placed to the test with latencies and 
memory performance using an image with 
dimensions of (512, 512, 397) and a slice thickness 
of 1.5mm. After being down-sampled to an isotropic 
resolution of 1.5, the size of the image being 
evaluated is now (287, 287, 397). 1.5 mm model 
(Single Model with 104 foreground classes) 
performs well with 28.73G of GPU and 26G of 
CPU. The dataset for MAR used to run our transfer 
learning model for organ auto segmentation is a 3d 
CT dataset of bones and metal implants within. A 
dataset for pelvic bone CT with implants has been 
chosen to preform our model for multi organs auto 
segmentation in the presence of metal artifact. 
Before their work in 3D segmentation of pelvic 
bones in various clinical conditions, one of their 
dataset categories was selected, which is our 
concern: Pelvic Bones with Metals [36]. 

  3. Results and Discussion  

This study introduces a segmentation model 
employing transfer learning along with supervised 
learning. The utilization of a transfer learning model 
demonstrated significant improvements in the 
performance of auto segmentation for multi-organs 
in the presence of metal implants. This improvement 
was achieved by mitigating the negative impact of 
metal artifacts on the segmentation process.  The 
application of 3D supervised transfer learning and 
registration techniques has been employed in order 
to reduce the presence of metal artifacts (MA) in 
computed tomography, or CT, images. The 
outcomes of our proposed model have been 
compared with the TotalSegmentator reference pre-
trained segmentation model. The segmentation 
method employing transfer learning was employed 
to perform segmentation based on the annotated 
ROI. Similarly, the TotalSegmentator pre-trained 
model was used to perform segmentation on the 
same ROI. Both segmentations have been exported 
in a DICOM standard format. For results evaluation 
and after the analysis process is completed, the 
segment comparison module is evaluated using two 
metrics such as the Dice coefficient and Harsdorf 
distance. These two metrics were used to compare 
the performance of the two segmentation methods. 
Overall, using the segment comparison module of 
SlicerRT [37] provides a powerful way to compare 
two segmentations and evaluate their performance 
using standard metrics. By combining the 
capabilities of MONAILabel and SlicerRT, we 
perform sophisticated analyses and gain insights into 
the strengths and weaknesses of different 
segmentation techniques. 

To validate our transfer learning model, we 
compare segmentation results for each organ to 
validate the model and calculate the validation 
accuracy of our segmentation in the presence of a 
metal implant; we refine the tuned transfer learning 
DynaUnet model. 
Figures (5, 6, 7, 8, 9, 10) show segmentation in four 
stages by transfer learning model for all classes 
(organs) chosen by DynaUnet pre-trained model 
auto segmentation, which includes metals 
thresholding labels (Supervised). These four images 
are cross-sections of a three-dimensional image 
obtained at different angles.  

First, employ a pre-trained model (transfer 
learning) for spleen segmentation, which is auto 
segmentation in the presence of metals, then utilise 
scribbles for  segmentation by active learning until 
performing         another segmentation optimiser that 
gives more adjustment in the spleen image, and 
finally compare the two via registration (aligning the 
segmentation obtained with the original from 
TotalSegmentator) to ensure that no metal artifacts 
remain visible. 
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Figure 5. Liver auto segmentation stages in the presence 
of metals using transfer learning model. 

 

 
 

Figure 6. Using a transfer learning model, Spleen auto-
segmentation stages in the presen ce of metals. 

 

 
. 

Figure 7. Left kidney auto segmentation stages in the 
presence of metals using transfer learning model. 

 
 

Figure 8. Right kidney auto segmentation stages in the 
presence of metals using transfer learning model. 

 

 
 

Figure 9. Inferior vena cava auto segmentation stages in 
the presence of metals using transfer learning model. 

 

 
 

Figure 10. Aorta auto segmentation stages in the 
presence of metals using transfer learning model. 
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Figure 11. Performances comparison between auto segmentation for all classes (organs) with metal implant participated 
in our transfer learning model with Totalsegmentator original model and its data without a metal implant. 

 
    Based on Table 1 experimental results, the 
accuracy range achieved by applying the transfer 
learning model was from 0.98 to 0.999, including 
the organ image reconstruction accuracy for seven 
organs involved in our work.  

It reached a dice score of 0.9985 for the aorta 
segmentation. The organs that participated in this 
work are the inferior vena cava, aorta, spleen, liver, 
stomach, and right and left kidneys. Harsdorff 
similarity distance was computed to evaluate our 
model performance in accurate organ segmentation 
despite the metal artifact's presence, as shown in 
Table 2. The dice value for the inferior vena cava 
was 0.9987, making the Harsdorff similarity 
distance 70.836. The left kidney had a dice score of 
0.9969 and a Harsdorff similarity distance of 
99.8976.  

Harsdorff similarity distance for the liver 
decreased to 40.8221 despite a dice score of 0.9969. 
The Harsdorf for the right kidney is 58,902 (0,9947 
on the dice). Harsdorff of   95.7455 for spleen when 
the score was 0.9998 and finally dice score of 
0.9829 for stomach with Harsdorff of 37.9819. 
These analytical findings demonstrate a high 
segmentation score even in the presence of a metal 
implant. However, the experimental results proved 
that a metal implant's presence did not affect the 
correctness segmentation even if the organ was 
positioned in the field of view of the metal implant.  
Figure 11 explains the performances comparison 
between auto segmentation for all classes (organs)  
with metal implant participated in our transfer 
learning model with Totalsegmentator original 
model and its data without a metal implant. 
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Table 1. Results of dice metrics scores for our transfer learning model for all selected classes (organs) compared with 
Totalsegmentator original model and the reference segment is foreground scribbles. 

 
Metric name 

  
                                                                          Metric value 

Compare 
segment 

aorta inferior vena 
cava 

left 
kidney 

liver right 
kidney 

spleen stomach 

Dice coefficient 0.30286 0.464946 0.189151 0.227128 0.0392095 0.699201 0.206863 

True positives 
(%) 

0.0325581 0.057477 0.0361229 0.2898 0.0108554 0.026915 0.223631 

True negatives 
(%) 

99.8176 99.8102 99.6542 97.7379 99.4571 99.9499 98.0615 

False positives 
(%) 

0.0156123 0.00921447 0.10239 1.09762 0.0317376 0.00983764 0.0508961 

False negatives 
(%) 

0.134276 0.123073 0.207311 0.874651 0.500266 0.0133202 1.66396 

Reference 
center 

(29.8378, 
-1.13531, 
1686.48) 

(109.932, -
14.6382, 
1577.02) 

(-33.2131, 
-13.2093, 
1641.6) 

(-16.8609, 
29.6008, 
1603.03) 

(68.1684, -
30.0134, 
1620.01) 

(85.0987, 
48.3864, 
1577.93) 

(5.7419, 
11.3902, 
1612.16) 

Compare 
center 

(29.2333, 
-3.3537, 
1654.61) 

(88.6246, -
16.7035, 
1581.48) 

(-6.96035, 
-21.6994, 
1620.32) 

(37.3081, 
0.0095101, 
1605.45) 

(39.9987, -
3.47126, 
1629.68) 

(81.9266, 
40.222, 
1584.68) 

(-9.28752, 
-0.250403, 
1622.49) 

Reference 
volume (cc) 

29.3209 31.7316 42.7833 204.651 89.8292 7.0713 111.589 

Compare 
volume (cc) 

8.46591 11.721 24.3435 243.838 7.4857 6.45925 16.2293 

Accuracy 0.9985 0.9987 0.9969 0.9969 0.9947 0.9998 0.9829 

 
Table 2. Results of Harsdorf 3D similarity distance scores for our transfer learning model for all chosen classes (organs) 
compared with Totalsegmentator original model and the reference segment is foreground. 

Metric name     Metric value         

Compare 
segment aorta inferior 

vena cava left kidney liver right 
kidney spleen stomach 

Maximum 
(mm) 148.077 196.353 132.431 119.377 166.056 122.635 79.4385 

Average 
(mm) 21.7632 15.8941 15.2395 25.9705 41.6591 9.81264 15.605 

95% (mm) 70.836 99.8976 40.8221 58.9002 95.7455 47.4621 37.9819 
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4. Conclusion 

Based on the research on the advantages of 3D 
supervised transfer learning and registration 
techniques to eliminate metal artifacts (MA) in CT 
images, it can be concluded that these techniques 
significantly improve the clarity of medical images in 
the presence of metal. The use of pre-trained models 
and auto-segmentation techniques reduces the impact 
of metal artifacts on the segmentation accuracy of the 
spleen member, for instance, and scribble 
segmentation with active learning further refines the 
segmentation process. The registration process 
ensures that the obtained segmentation aligns with 
the original from TotalSegmentator, allowing for 
accurate and precise visualisation of the spleen. 
These techniques eliminate the harmful effects of 
metal artifacts on image quality and provide a 
reliable solution for medical imaging applications. 
This research demonstrates the efficacy of active 
transfer learning for improving the accuracy of 
medical image segmentation and the potential 
benefits of 3D supervised transfer learning and 
registration techniques in other medical imaging 
applications. Future works can be as follows: 
Integration of deep learning techniques: As deep 
learning algorithms continue to advance, integrating 
them into the current 3D supervised transfer learning 
and registration techniques could potentially improve 
the accuracy and efficiency of the segmentation 
process. Exploration of other registration techniques: 
This study used registration to align the obtained 
segmentation with the original from 
TotalSegmentator. However, exploring other 
registration techniques could lead to even more 
accurate results. Clinical validation: Future studies 
could validate the effectiveness of these techniques 
in a clinical setting to assess their impact on patient 
outcomes, diagnostic accuracy, and treatment 
planning. The generalisation to other imaging 
modalities: Although this study focused on CT 
images, it would be interesting to explore the 
generalizability of these techniques to other imaging 
modalities, such as MRI or PET, where metal 
artifacts can also impact image quality. 
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