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Abstract. WEKA and MOA are a free open-source software project specific for data mining and 
data stream mining, respectively. They are written in Java and developed at the University of 
Waikato, New Zealand. This research paper presents a comprehensive study of both consists of 
algorithms, evaluation, visualization, correlation between WEKA and MOA, workflow of 
implementation, and the classification accuracy. 
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1.  Introduction 
WEKA and MOA are the state-of-the-art facilities for developing machine learning techniques and their 
application to real-world data mining problems. WEKA and MOA are an open source developed by the 
University of Waikato in New Zealand that implement a collection of learning algorithms for data 
mining tasks and data stream mining tasks using JAVA language. Where, WEKA stands for Waikato 
Environment for Knowledge Analysis, and MOA stands for Massive Online Analysis. The classifiers 
available in WEKA can be used in MOA such as moa.classifiers.meta.WEKA.Classifier.  

Whereas the data streams and the classifiers available in MOA can also be used in WEKA such as 
weka.data.generators.classifiers.classification.MOA. However, the main difference between them is the 
evaluation method applied. A rotation estimation method is used for the purpose of evaluation in WEKA 
which is also known as Cross Validation [8]. The main aim of this method is to partition a dataset into 
batches (i.e., train and test). Whereas in MOA, the test task is applied firstly and then training a data 
instance. Where a limited time is required. Hence, huge data can be manipulated and prediction can be 
achieved quickly at any time. This is also known as Prequential [1].  

WEKA and MOA use the data in ARFF file format as a dataset comprises of attribute names and 
types with their data instances [3]. A data instance consists of attributes values with/without a class label 
which is the discrete attribute whose value needs to be predicted based on the values of other attributes.  

The rest of the paper is organized as follows. In Section II, the main characteristics of WEKA is 
introduced. In Section III, the main characteristics of MOA is also introduced. Workflow of WEKA and 
MOA is discussed in Section IV. Whereas Section V presents the evaluation of the performance of both 
WEKA and MOA with respect to the classification accuracy achieved. 

2.  WEKA 
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In WEKA, the algorithms are applied for data pre-processing, classification, clustering, regression, 
association rules, and visualization. The classification and clustering algorithms can be applied with 
batch and incremental learning such as NaiveBayes and Hoeffding Tree. Where batch learning means 
that an algorithm uses part of training data instances. Multi scan over one or more data instances are 
required for making predictions. There are at least three types of batch learning which are batch, 
stochastic, and mini-batch. In batch, one batch is generated using all training data instances. In 
stochastic, the batch represents the size of one data instance. While in mini-batch, the batch size is more 
than one sample and less than the size of the training dataset.  

In WEKA, Java classes (i.e., Attributes, Instance, Instances) are embedded in package. An attribute 
is represented as an object of class attribute consists of its name and type. An Instance is represented as 
an object of class Instance consists of the attribute values [9].  

A learning algorithm is evaluated using Holdout strategy. A single holdout set is used to measure 
performance when batch learning reaches a threshold. The division between train and test sets needs to 
be identified in advance. Hence, results from different experiments can be evaluated and compared [2]. 
In addition, Cross-Validation is used as an evaluation technique (i.e., applying percentage splits 
repeatedly). A dataset is divided into n Folds (i.e., 10 Folds as default). Where each Fold is hold in turn 
for the purpose of training and train on n1. Number of evaluations will be n which is averaged (i.e., 
accuracy). 

There is a collection of filters to process the data instances and attributes such as (Add Filter, Delete 
Filter, Make Indicator Filter, Merge Attribute Values Filter, Nominal To Binary Filter, Select Filter, 
Replace Missing Values Filter, Swap Attribute Values Filter, Discretise Filter, and Numeric Transform 
Filter). Feature selection technique is also included to select relevant features such as Wrapper and 
Relief. Figures 1 and 2 show the WEKA’s framework and explorer. 

 

 Figure 1. The WEKA’s Framework. 
 

 Figure 2. The WEKA’s Explorer. 
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3.  MOA 
In MOA, the algorithms are applied for classification, regression, clustering, outlier detection, concept 
drift detection, recommender systems, and visualization. MOA is a software environment and an open 
source framework which is also written in Java for implementing algorithms and running experiments 
for online learning from evolving data streams. The stream arrives instance by instance. Once an 
instance from a data stream has been processed, it cannot be retrieved as it is ignored [4]. Figure 3 shows 
the MOA’s framework. 

 

 Figure 3. The MOA’s Framework 
 
A learning algorithm is evaluated using test and train (Prequential). In the current time (i.e., time 

stamp) of a data instance, test a model is applied before using the data instances for training the model. 
Where a set of time stamps refer to a time window. If a dataset consists 1000 data instances with window 
size of 100. This means that there are 10 windows. 100 data instances with each window. Only recent 
data is examined instead of the whole data stream using windowing approaches [7] which consist of 
three models which are sliding, damped, and landmark [11], [10]. Sliding window is the most common 
model which is frequently applied in data with streaming setting [10]. It is also known as first-in-first-
out. 

The performance of two algorithms can be evaluated in MOA using visualization method for 
clustering and outliers, as shown in Figures 4, 5, 6, and 7. Another evaluation is 
moa.classifiers.drift.SingleClassifierDrift which is used to evaluate drift detection methods (i.e., 
unexpected in data over time).  

 

 
Figure 4. Setup of Clutering Algorithms Visualization in MOA. 
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Figure 5. Evaluation of the Performance of the Clustering Algorithms in MOA 

 

 
Figure 6. Setup of Outliers Detection Visualization in MOA. 

 

 
Figure 7. Evaluation of the Performance of the Outliers Detection Algorithms in MOA. 

 

4.  WORKFLOW OF WEKA AND MOA 
This section presents the workflow of WEKA and MOA in terms of evaluation technique used. Figure 
8 shows the typical workflow of WEKA. A dataset needs to be partitioned in dvance (i.e., offline) for 
training and test. A classifier is then introduced to build a model using the training data. Whereas test 
data is used to evaluate the generated model. This is very common technique used in WEKA to evaluate 
the models. However, huge data (i.e., big data) cannot be processed using this technique as it is 
considered time consuming [1]. 
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 Figure 8. Worflow of WEKA. 
 
Thus, analysing data streams in real-time needs an adaptive and computationally efficient algorithm 

which does not need to process the entire data as shown in Figure 9. Where a single scan over data 
stream is required. However a dataset which does not generated in a streaming setting mentioned in 
Section III can be used in MOA as well. Whereas WEKA unable to process the dataset with the 
streaming setting as a large amount of memory space is required. 

 

 Figure 9. Worflow of MOA. 
 
Where Test and Train refer to Prequential. Examining data (i.e., data instance) is applied over the 

windowing approaches in real-time (i.e., online). Each examined data instance (i.e., test task) is then 
sent into a classifier for the purpose of training. Hence data with any size (i.e., even if size is unlimited) 
can be used as Prequential is considered as memory less [5]. However, once a data instance is arrived it 
cannot be retrieved again as it is discarded. Therefore, MOA algorithms are designed to handle data 
streams in terms of accumulating statistics over time. This is known as statistical windowing approaches. 
For example, a counter can be kept for counting number of true positive prediction over time stamp, for 
each data instance with its class label. Where the counter is incremented by 1 when predicted class label 
equals to actual class label. Accuracy is then calculated by dividing number WEKA Generator MOA 
(Test-Then-Train) WEKA (Cross-Validation) Agrawal 95.10 94.50 BayesNet 72.90 69.90 
RandomRBF 89.10 88.95 RDG1 94.50 92.14 LED24 74.60 73.91 of true 
positive predictions over total attempts at the end of stream [6]. 

5.  EVALUATION 
This section presents an evaluation of the performance of WEKA and MOA in terms of the accuracy 
achieved using 5 datasets generated by WEKA data generators which are available in 
(weka.datagenerators.classifiers.classification) such as Agrawal, BayesNet, LED24, RandomRBF, and 
RDG1. Each generated dataset with 100000 data instances. A default setting of each data generator is 
applied. Table I shows description of the generated datasets. In MOA, window size of 10000 instances 
is used. Whereas Cross-Validation of 10 Folds is used in WEKA. 

 
Table 1. DESCRIPTION OF DATASETS 

WEKA Generator Features Class Label 

Agrawal 9 2 

BayesNet 9 2 

RandomRBF 10 2 
RDG1 9 2 
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LED24 24 10 
 
For the purpose of evaluation, 2 incremental classifiers are chosen which are NaiveBayes and 

Hoeffding Tree. They can be applied in WEKA and MOA. Table II and Table III show the accuracy 
reported. Whereas Figure 10 and Figure 11 show the difference in percentage of the accuracy. Although 
the datasets are generated using WEKA generators, MOA achieved a higher accuracy compared with 
WEKA with respect to the classifiers and datasets. The accuracy would be affected due to partitioning 
a dataset into parts or Folds for training and testing. This also is considered not applicable technique for 
big data. Where size of data is not known as it is generated and labeled dynamically in real-time. 
Therefore, each data instance is used for both tasks test and train overtime. Accuracy is then calculated 
incrementally, and can be increased gradually over time. 

 
Table 3. THE ACCURACY ACHIEVED WITH NAIVEBAYES CLASSIFIER 

WEKA Generator MOA (Test-Then-Train) WEKA (Cross-Validation) 
Agrawal 88.40 88.30 
BayesNet 66.90 65.86 

RandomRBF 69.10 68.88 
RDG1 87.30 85.22 
LED24 74.80 74.01 

 
Table 3. THE ACCURACY ACHIEVED WITH HOEFFDING TREE CLASSIFIER 

WEKA Generator MOA (Test-Then-Train) WEKA (Cross-Validation) 

Agrawal 95.10 94.50 
BayesNet 72.90 69.90 

RandomRBF 89.10 88.95 
RDG1 94.50 92.14 
LED24 74.60 73.91 

 

 
Figure 10. Difference in Percentage with NaiveBayes Classifier 

 
Figure 11. Difference in Percentage with Hoeffding Tree Classifier 
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6.  CONCLUSION 
WEKA can only handle datasets with limited size. Whereas MOA is designed to deal with big data, 
which is generated and labeled dynamically in real-time with ultra high speed. Where a limited amount 
of memory is used in a limited amount of time. A class label can be predicted at any time as well as one 
data instance is processed at a time. Based of these environments and requirements, a robust evaluation 
method is used with MOA to evaluate the performance of the algorithms as discussed in this research 
paper. The results show that the Test-Then-Train can achieved higher accuracy compared with Cross-
Validation. 
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