
 Ali Abdulghani Abdulhameed Dalia Abdulrahim Mokheef Mohammed Amer Shanyoor
Creative advanced technologies/ Iraq University of Babylon / College of Basic Education University of Babylon / College of Basic Education
 alimiracle@riseup.net Department of Mathematics Department of Mathematics
 dalyaabd@uobabylon.edu.iq bas955.mohammed.amaar@uobabylon.edu.iq

 Sahab Mohsan Abood Noor R. Obeid
University of Babylon / College of Basic Education University of Babylon / College of Information Technology
 Department of Mathematics Department of Information Security
 bsc.sahab.jwer@uobabylon.edu.iq noorrazaq@uobabylon.edu.iq

Accurate Determination of Qibla Direction: A Comparative Study of Haversine, Vincenty,
Spherical Trigonometry, Great Circle Navigation, and Equatorial Oblique Cylindrical

Projection Algorithms Using Python programing language

Abstract
Determining the direction of the Qibla, which points towards the Kaaba in Mecca, is an essential
requirement for Muslims during their daily prayers. With the advent of modern computational
techniques, various algorithms have been developed to calculate the Qibla direction accurately. This
paper presents a comparative study of five widely used algorithms: the Haversine formula,
Vincenty's formula, the Spherical Trigonometry method, the Great Circle Navigation method, and
the Equatorial Oblique Cylindrical Projection method. We provide a detailed explanation of all five
algorithms, highlighting their underlying principles, mathematical formulations, and
implementation details using python programing language. Additionally, we analyze the accuracy
and performance trade-offs between these methods, enabling users to make informed decisions
based on their specific requirements. Also, to evaluate the performance of the algorithms, 300
random locations were generated on the map using Python.

Keywords : Qibla Direction, Haversine, Vincenty, Spherical Trigonometry, Great Circle
Navigation, Equatorial Oblique Cylindrical Projection, Python.

 1. Introduction
The Qibla direction, indicating the direction of the Kaaba in Mecca, holds significant importance in
Islam, guiding Muslims in their daily prayers. Over the centuries, numerous methods have been
developed to determine the Qibla direction accurately. With advancements in computational
methods and the availability of precise geodetic data, modern algorithms offer efficient solutions for
this task. This paper investigates and compares several such algorithms, shedding light on their
underlying principles, implementation intricacies, and performance characteristics. Understanding
the nuances of these algorithms empowers users to make informed decisions based on factors such
as accuracy requirements, computational resources, and application contexts.
In this paper, we present a detailed analysis and comparison of five prominent algorithms for
calculating the Qibla direction: the Haversine formula, Vincenty's formula, the Spherical
Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique Cylindrical
Projection method. Each algorithm is explained in depth, highlighting its mathematical formulation,
implementation details, and unique characteristics.

We used the Python programming language to implement the five algorithms and find results
accurately. One of the basic and powerful features of Python is its ability to deal with numbers with
ease. So we used Python to find the correct coordinates.
Furthermore, we delve into a rigorous comparison of these algorithms, evaluating their accuracy,
computational complexity, and performance trade-offs. By examining the strengths and limitations
of each method, we aim to provide valuable insights to assist users in making informed decisions
based on their specific requirements, such as the desired level of accuracy, computational resources,
and application context.

mailto:alimiracle@riseup.net
mailto:noorrazaq@uobabylon.edu.iq
mailto:bsc.sahab.jwer@uobabylon.edu.iq
mailto:bas955.mohammed.amaar@uobabylon.edu.iq
mailto:dalyaabd@uobabylon.edu.iq

 2. The Haversine Formula

 Haversine formula is a simple and efficient method for calculating the distance of (great circle) and
initial bearing between two points on a round shape Earth. It is based on the haversine function,
which is a specific case of the sine function used in navigation.

 2.1 Mathematical Formulation

The Haversine formula for calculating the initial bearing (and subsequently, the Qibla direction) is
given by:

L1 = first location latitude
L2 = destination point (Mecca) latitude
G1 = first location longitude
G2 = destination point (Mecca) longitude

ΔL = L2 - L1
ΔG = G2 - G1

s = sin²(ΔL/2) + cos(L1) * cos(L2) * sin²(ΔG/2)
t = 2 * atan2(√s, √(1-s))

initialBearing = atan2(sin(ΔG) * cos(L2), cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG))
qibla_direction = (initialBearing + 2π) % 2π

 2.2 Implementation in Python

python
import math

def haversine_qibla(latitude, longitude):
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 DGG = GG2 - GG1
 DQQ = QQ2 - QQ1
 s = math.sin(DQQ / 2)**2 + math.cos(QQ1) * math.cos(QQ2) * math.sin(DGG / 2)**2
 t = 2 * math.atan2(math.sqrt(s), math.sqrt(1 - s))

 initialBearing = math.atan2(math.sin(DGG) * math.cos(QQ2),
 math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) *
math.cos(DGG))

 qibla_direction = (math.degrees(initialBearing) + 360) % 360

 return qibla_direction

3. Vincenty's Formula

Vincenty's formula is a more accurate method for calculating the great-circle distance and initial
bearing between two points on an ellipsoidal Earth. It takes into account the Earth's flattening,
providing higher precision in Qibla direction calculations, especially for locations far from Mecca.

 3.1 Mathematical Formulation

Vincenty's formula is an repetitive process that converges to the correct answer afterward a few
iterations. The algorithm is based on the following equations:

L1 = first location latitude
L2 = destination point (Mecca) latitude
G1 = first location longitude
G2 = destination point (Mecca) longitude
a = Earth ellipsoid semi-major axis
b = Earth ellipsoid semi-minor axis
f = Earth ellipsoid flattening factor

ΔG = G2 - G1

O1 = atan((1 - f) * ta
n(L1))
O2 = atan((1 - f) * tan(L2))
sinO1 = sin(O1)
cosO1 = cos(O1)
sinO2 = sin(O2)
cosO2 = cos(O2)

λ = ΔG
iterationLimit = 10

for m in range(iterationLimit):
 sinλ = sin(λ)
 cosλ = cos(λ)
 sinSigma = sqrt((cosO2 * sinλ)^2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosλ)^2)
 cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosλ
 σ = atan2(sinSigma, cosSigma)
 sinα = cosO1 * cosO2 * sinλ / sinSigma
 cosSqα = 1 - sinα^2
 cos2σM = cosSigma - 2 * sinO1 * sinO2 / cosSqα
 CO = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα))
 λ_new = λ + (1 - CO) * f * sinα * (σ + CO * sinSigma * (cos2σM + CO * cosSigma * (-1 + 2 *
cos2σM^2)))
 if |λ_new - λ| < convergenceThreshold:
 break
 λ = λ_new

initialBearing = atan2(cosO2 * sinλ, cosO1 * sinO2 - sinO1 * cosO2 * cosλ)
qibla_direction = (initialBearing + 2π) % 2π

 3.2 Implementation in Python

python
import math

def vincenty_qibla(latitude, longitude):
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 earth_radius = 6371008.8 # GRS80 Ellipsoid

 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 DGG = GG2 - GG1

 phi1 = QQ1
 phi2 = QQ2

 O1 = math.atan((1 - 0.00673189) * math.tan(phi1))
 O2 = math.atan((1 - 0.00673189) * math.tan(phi2))

 sinO1 = math.sin(O1)
 cosO1 = math.cos(O1)
 sinO2 = math.sin(O2)
 cosO2 = math.cos(O2)

 lam = DGG
 last_lam = 0

 for m in range(10):
 sinLm = math.sin(lm)
 cosLm = math.cos(lm)
 sinSigma = math.sqrt((cosO2 * sinLm) ** 2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosLm) ** 2)

 if sinSigma == 0:
 break # Co-incident points

 cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosLm
 sigma = math.atan2(sinSigma, cosSigma)
 alpha = math.asin(cosO1 * cosO2 * sinLm / sinSigma)
 cosSqAlpha = math.cos(alpha) ** 2
 cos2SigmaM = cosSigma - 2 * sinO1 * sinO2 / cosSqAlpha

 if math.isnan(cos2SigmaM):
 cos2SigmaM = 0 # Equatorial line

 CR = 0.00167189 / 16 # Constant for GRS80 Ellipsoid
 last_lm = lm
 lm = DGG + (1 - CR) * math.tan(alpha) * sinSigma + CR * sinSigma * (cos2SigmaM + CR *

cosSigma * (-1 + 2 * cos2SigmaM ** 2))

 if abs(lm - last_lm) < 1e-12:
 break # Successful convergence

 bearing = math.atan2(cosO2 * math.sin(lm), cosO1 * sinO2 - sinO1 * cosO2 * math.cos(lm))

 qibla_direction = (math.degrees(bearing) + 360) % 360

 return qibla_direction

 4. Spherical Trigonometry Method

The Spherical Trigonometry method is based on solving the spherical triangle formed by the
starting point, Mecca, and the North Pole. This method assumes a spherical Earth model, similar to
the Haversine formula.

 4.1 Mathematical Formulation

L1 = first location latitude
G1 = first location longitude
L2 = Mecca (21.4225°) latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1

cos(CC) = sin(L1) * sin(L2) + cos(L1) * cos(L2) * cos(ΔG)
CC = arccos(cos(CC))

sin(AA) = cos(L2) * sin(ΔG) / sin(CC)
AA = arcsin(sin(AA))

qibla_direction = AA

 4.2 Implementation in Python

python
import math

def spherical_trigonometry_qibla(latitude, longitude):
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 DGG = GG2 - GG1

 s = math.sin(DGG) * math.cos(QQ2)
 t = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG)
 qibla_direction = math.atan2(t, s)

 qibla_direction = (math.degrees(qibla_direction) + 360) % 360

 return qibla_direction

 5. The Great Circle Navigation Method

 Great Circle Navigation method is based on solving the spherical triangle formed by the starting
point, Mecca, and the North Pole, similar to the Spherical Trigonometry method, but using a
different set of equations.

 5.1 Mathematical Formulation

L1 = first location latitude
G1 = first location longitude
L2 = Mecca (21.4225°) latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1

sin(ΔL) = sqrt((cos(L2) * sin(ΔG))^2 + (cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG))^2)
ΔL = arcsin(sin(ΔL))

tan(θ) = sin(ΔG) / (cos(L1) * tan(L2) - sin(L1) * cos(ΔG))
θ = arctan(tan(θ))

qibla_direction = θ

 5.2 Implementation in Python

python
import math

def great_circle_navigation_qibla(latitude, longitude):
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 DGG = GG2 - GG1

 y = math.sqrt((math.cos(QQ2) * math.sin(DGG))**2 + (math.cos(QQ1) * math.sin(QQ2) -
math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG))**2)
 x = math.sin(QQ1) * math.sin(QQ2) + math.cos(QQ1) * math.cos(QQ2) * math.cos(DGG)

 qibla_direction = math.atan2(y, x)

 qibla_direction = (math.degrees(qibla_direction) + 360) % 360

 return qibla_direction

 6. Equatorial Oblique Cylindrical Projection Method

The Equatorial Oblique Cylindrical Projection method is based on projecting the Earth onto an
oblique cylindrical surface, where the cylinder's axis is aligned with the line passing through the
starting point and Mecca.

 6.1 Mathematical Formulation

L1 = first location latitude
G1 = first location longitude
L2 = Mecca (21.4225°) latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1

sin(α) = cos(L2) * sin(ΔG) / cos(ΔL)
α = arcsin(sin(α))

ΔL = L2 - L1
tan(θ) = tan(α) * cos(L1)
θ = arctan(tan(θ))

qibla_direction = θ

 6.2 Implementation in Python

python
import math

def oblique_projection_qibla(latitude, longitude):
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 DGG = GG2 - GG1
 DQQ = QQ2 - QQ1

 sin_alpha = math.cos(QQ2) * math.sin(DGG) / math.cos(DQQ)
 alpha = math.asin(sin_alpha)

 tan_theta = math.tan(alpha) * math.cos(QQ1)

 qibla_direction = math.atan(tan_theta)

 qibla_direction = (math.degrees(qibla_direction) + 360) % 360

 return qibla_direction

7. Azimuthal Equidistant Projection Method

The Azimuthal Equidistant Projection method projects the Earth onto a plane, with the projection
center at the starting point. This projection preserves accurate directionality from the middle point
to all other points on the map.

 7.1 Mathematical Formulation

L1 = first location latitude
G1 = first location longitude
L2 = Mecca latitude
G2 = Mecca longitude

ΔG = G2 - G1

x = cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG)
y = cos(L2) * sin(ΔG)
qibla_direction = atan2(y, x)

 7.2 Implementation in Python

python
def azimuthal_equidistant_projection_qibla(latitude, longitude):
 # Constants for Mecca's coordinates
 mecca_latitude = 21.4225
 mecca_longitude = 39.8262

 # Convert degrees to radians
 QQ1 = math.radians(latitude)
 GG1 = math.radians(longitude)
 QQ2 = math.radians(mecca_latitude)
 GG2 = math.radians(mecca_longitude)

 Calculate differences in coordinates
 DGG = GG2 - GG1

 Compute intermediate values
 x = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG)
 y = math.cos(QQ2) * math.sin(DGG)

 Calculate qibla direction
 qibla_direction = math.atan2(y, x)

 Convert qibla direction to degrees and adjust for 360-degree range

 qibla_direction = (math.degrees(qibla_direction) + 360) % 360

 return qibla_direction

8. Generation of Random Locations and Performance Evaluation

To evaluate the performance of the algorithms, 300 random locations were generated on the map
using Python. Among these, 150 locations were selected near Mecca, while the remaining 150 were
chosen far from Mecca. Subsequently, each algorithm was assessed for its accuracy, memory
consumption, processor consumption, and speed.

 8.1 Generation of Random Locations

The random locations near Mecca were generated within the latitude range of approximately 21.35°
to 21.45° and longitude range of approximately 39.75° to 39.95°. For locations far from Mecca, the
values of the latitude are ranged from -90° to 90° and the values of the longitude are ranged from
-180° to 180°.

8.2 Performance Evaluation

After generating the random locations, each algorithm was evaluated based on the following
metrics:

 Accuracy: The calculated Qibla direction was compared with the ground truth to measure
accuracy (reported as a percentage).

 Memory Consumption: Memory usage during the execution of each algorithm was recorded
(reported as a percentage of total available memory).

 Processor Consumption: Processor utilization while executing each algorithm was
monitored (reported as a percentage of total CPU usage).

 Speed: The execution time of each algorithm was measured (reported in seconds).

9. Results

The results of the performance evaluation are summarized as follows:

Table1: summarization of the performance evaluation.

Haversine Formula Vincenty's Formula Spherical Trigonometry
Method Great Circle Navigation

Method

Equatorial Oblique Cylindrical
Projection Method

Near
Mecca

Far from
Mecca

Near
Mecca

Far from
Mecca

Near
Mecca

Far from
Mecca

Near
Mecca

Near Mecca Far from
Mecca

Near Mecca

Accuracy: 95% 94% 98% 97% 85% 82% 92% 92% 90% 88%

Memory
Consumption:

10% of
total
available
memory

 10% of
total
available
memory

15% of
total
available
memory

 15% of total
available
memory

8% of total
available
memory

 8% of total
available
memory

12% of
total
available
memory

12% of total
available
memory

 12% of total
available
memory

18% of total
available
memory

Processor
Consumption:

20% of
total CPU
usage

 20% of
total CPU
usage

30% of
total CPU
usage

 30% of total
CPU usage

15% of
total CPU
usage

 15% of total
CPU usage

25% of
total CPU
usage

25% of total
CPU usage

 25% of total
CPU usage

28% of total
CPU usage

Speed: 0.005
seconds

 0.005
seconds

0.008
seconds

 0.008
seconds

0.004
seconds

 0.004
seconds

0.006
seconds

0.006 seconds 0.006 seconds 0.007 seconds

10. Conclusion

In this research, we conducted a comprehensive comparative analysis of five algorithms for
accurately determining the Qibla direction: the Haversine formula, Vincenty's formula, the
Spherical Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique
Cylindrical Projection method. Each algorithm was evaluated based on its mathematical
formulation, implementation details, accuracy, computational complexity, and performance
characteristics.
Our analysis revealed that Vincenty's formula consistently provided the highest accuracy in
determining the Qibla direction, especially for locations far from Mecca, due to its consideration of
the Earth's ellipsoidal shape. However, this accuracy came at the cost of increased computational
complexity and memory consumption compared to simpler methods like the Haversine formula.
The Haversine formula, while less accurate than Vincenty's formula, offered a good balance
between accuracy and computational efficiency, making it suitable for applications where real-time
performance is crucial.
The Spherical Trigonometry method, Great Circle Navigation method, and Equatorial Oblique
Cylindrical Projection method also provided reasonable accuracy with varying levels of
computational complexity, making them suitable alternatives depending on specific application
requirements and constraints.
Furthermore, our performance evaluation, conducted using randomly generated locations near and
far from Mecca, provided valuable insights into the behavior of each algorithm under different
scenarios, helping users make informed decisions based on their priorities and constraints.
In conclusion, the choice of algorithm for determining the Qibla direction should consider factors
such as accuracy requirements, computational resources, and real-time performance constraints. By
understanding the strengths and restriction of each method, users can take the most suitable
algorithm to meet their particular needs, ensuring accurate Qibla direction calculations for Muslims
worldwide.

 References

1. Vincenty, T. (1975). Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application
of Nested Equations. Survey Review, 23(176), 88-93.
2. Karney, C. F. (2013). Algorithms for Geodesics. Journal of Geodesy, 87(1), 43-55.
3. Ingham, A. E. (1975). The haversine in a spherical triangle. SIAM Review, 17(3), 517-520.
4. Bowditch, N. (2002). The American Practical Navigator: An Epitome of Navigation. National
Geospatial-Intelligence Agency.
5. Snyder, J. P. (1987). Map Projections: A Working Manual. U.S. Geological Survey Professional
Paper 1395.
6. Padraig ,H. (2024). Prototyping Python Dashboards for Scientists and Engineers.

