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Accurate Determination of Qibla Direction: A Comparative Study of Haversine, Vincenty,
Spherical Trigonometry, Great Circle Navigation, and Equatorial Oblique Cylindrical

Projection Algorithms Using Python programing language

Abstract 
Determining the direction of the Qibla, which points towards the Kaaba in Mecca, is an essential
requirement  for  Muslims  during  their  daily  prayers.  With  the  advent  of  modern  computational
techniques, various algorithms have been developed to calculate the Qibla direction accurately. This
paper  presents  a  comparative  study  of  five  widely  used  algorithms:  the  Haversine  formula,
Vincenty's formula, the Spherical Trigonometry method, the Great Circle Navigation method, and
the Equatorial Oblique Cylindrical Projection method. We provide a detailed explanation of all five
algorithms,  highlighting  their  underlying  principles,  mathematical  formulations,  and
implementation details using python programing language. Additionally, we analyze the accuracy
and performance trade-offs  between these methods,  enabling  users to  make informed decisions
based on their  specific  requirements.  Also,  to  evaluate  the  performance  of  the algorithms,  300
random locations were generated on the map using Python.

Keywords  :  Qibla  Direction, Haversine,   Vincenty,  Spherical  Trigonometry,  Great  Circle
Navigation,  Equatorial Oblique Cylindrical Projection, Python.

 1. Introduction 
The Qibla direction, indicating the direction of the Kaaba in Mecca, holds significant importance in
Islam, guiding Muslims in their daily prayers. Over the centuries, numerous methods have been
developed  to  determine  the  Qibla  direction  accurately.  With  advancements  in  computational
methods and the availability of precise geodetic data, modern algorithms offer efficient solutions for
this task. This paper investigates and compares several such algorithms, shedding light on their
underlying principles, implementation intricacies, and performance characteristics. Understanding
the nuances of these algorithms empowers users to make informed decisions based on factors such
as accuracy requirements, computational resources, and application contexts. 
In  this  paper,  we present  a  detailed  analysis  and comparison  of  five  prominent  algorithms  for
calculating  the  Qibla  direction:  the  Haversine  formula,  Vincenty's  formula,  the  Spherical
Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique Cylindrical
Projection method. Each algorithm is explained in depth, highlighting its mathematical formulation,
implementation details, and unique characteristics. 

We used the  Python  programming  language  to  implement  the  five  algorithms  and find  results
accurately. One of the basic and powerful features of Python is its ability to deal with numbers with
ease. So we used Python to find the correct coordinates.
Furthermore, we delve into a rigorous comparison of these algorithms, evaluating their accuracy,
computational complexity, and performance trade-offs. By examining the strengths and limitations
of each method, we aim to provide valuable insights to assist users in making informed decisions
based on their specific requirements, such as the desired level of accuracy, computational resources,
and application context. 
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 2. The Haversine Formula 

 Haversine formula is a simple and efficient method for calculating the distance of (great circle) and
initial bearing between two points on a round shape Earth. It is based on the haversine function,
which is a specific case of the sine function used in navigation. 

 2.1 Mathematical Formulation 

The Haversine formula for calculating the initial bearing (and subsequently, the Qibla direction) is
given by: 
 
L1 = first location latitude
L2 = destination point (Mecca)  latitude
G1 = first location longitude 
G2 = destination point (Mecca) longitude

ΔL = L2 - L1 
ΔG = G2 - G1 

s = sin²(ΔL/2) + cos(L1) * cos(L2) * sin²(ΔG/2) 
t = 2 * atan2(√s, √(1-s)) 

initialBearing = atan2(sin(ΔG) * cos(L2), cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG)) 
qibla_direction = (initialBearing + 2π) % 2π 

 2.2 Implementation in Python 

python 
import math 

def haversine_qibla(latitude, longitude): 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
    
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
    DGG = GG2 - GG1 
    DQQ = QQ2 - QQ1 
    s = math.sin(DQQ / 2)**2 + math.cos(QQ1) * math.cos(QQ2) * math.sin(DGG / 2)**2 
    t = 2 * math.atan2(math.sqrt(s), math.sqrt(1 - s)) 
    
    initialBearing = math.atan2(math.sin(DGG) * math.cos(QQ2), 
                                  math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) *
math.cos(DGG)) 
    
    qibla_direction = (math.degrees(initialBearing) + 360) % 360 
    
    return qibla_direction 



3. Vincenty's Formula 

Vincenty's formula is a more accurate method for calculating the great-circle distance and initial
bearing between two points on an ellipsoidal  Earth.  It  takes into account  the Earth's  flattening,
providing higher precision in Qibla direction calculations, especially for locations far from Mecca. 

 3.1 Mathematical Formulation 

Vincenty's formula is an repetitive process that converges to the correct answer afterward a few
iterations. The algorithm is based on the following equations: 
 
L1 = first location latitude 
L2 = destination point (Mecca) latitude
G1 = first location longitude
G2 = destination point (Mecca) longitude
a =    Earth ellipsoid semi-major axis
b =    Earth ellipsoid semi-minor axis
f =    Earth ellipsoid flattening factor 

ΔG = G2 - G1 

O1 = atan((1 - f) * ta
n(L1)) 
O2 = atan((1 - f) * tan(L2)) 
sinO1 = sin(O1) 
cosO1 = cos(O1) 
sinO2 = sin(O2) 
cosO2 = cos(O2) 

λ = ΔG 
iterationLimit = 10 

for m in range(iterationLimit): 
    sinλ = sin(λ) 
    cosλ = cos(λ) 
    sinSigma = sqrt((cosO2 * sinλ)^2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosλ)^2) 
    cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosλ 
    σ = atan2(sinSigma, cosSigma) 
    sinα = cosO1 * cosO2 * sinλ / sinSigma 
    cosSqα = 1 - sinα^2 
    cos2σM = cosSigma - 2 * sinO1 * sinO2 / cosSqα 
    CO = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα)) 
    λ_new = λ + (1 - CO) * f * sinα * (σ + CO * sinSigma * (cos2σM + CO * cosSigma * (-1 + 2 *
cos2σM^2))) 
    if |λ_new - λ| < convergenceThreshold: 
        break 
    λ = λ_new 

initialBearing = atan2(cosO2 * sinλ, cosO1 * sinO2 - sinO1 * cosO2 * cosλ) 
qibla_direction = (initialBearing + 2π) % 2π 



 3.2 Implementation in Python 

python 
import math 

def vincenty_qibla(latitude, longitude): 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
    
    earth_radius = 6371008.8  # GRS80 Ellipsoid 
    
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
    DGG = GG2 - GG1 
    
    phi1 = QQ1 
    phi2 = QQ2 
    
    O1 = math.atan((1 - 0.00673189) * math.tan(phi1)) 
    O2 = math.atan((1 - 0.00673189) * math.tan(phi2)) 
    
    sinO1 = math.sin(O1) 
    cosO1 = math.cos(O1) 
    sinO2 = math.sin(O2) 
    cosO2 = math.cos(O2) 
    
    lam = DGG 
    last_lam = 0 
    
    for m in range(10): 
        sinLm = math.sin(lm) 
        cosLm = math.cos(lm) 
        sinSigma = math.sqrt((cosO2 * sinLm) ** 2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosLm) ** 2)
        
        if sinSigma == 0: 
            break  # Co-incident points 
        
        cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosLm 
        sigma = math.atan2(sinSigma, cosSigma) 
        alpha = math.asin(cosO1 * cosO2 * sinLm / sinSigma) 
        cosSqAlpha = math.cos(alpha) ** 2 
        cos2SigmaM = cosSigma - 2 * sinO1 * sinO2 / cosSqAlpha 
        
        if math.isnan(cos2SigmaM): 
            cos2SigmaM = 0  # Equatorial line 
        
        CR = 0.00167189 / 16  # Constant for GRS80 Ellipsoid 
        last_lm = lm 
        lm = DGG + (1 - CR) * math.tan(alpha) * sinSigma + CR * sinSigma * (cos2SigmaM + CR *



cosSigma * (-1 + 2 * cos2SigmaM ** 2)) 
        
        if abs(lm - last_lm) < 1e-12: 
            break  # Successful convergence 
    
    bearing = math.atan2(cosO2 * math.sin(lm), cosO1 * sinO2 - sinO1 * cosO2 * math.cos(lm)) 
    
    qibla_direction = (math.degrees(bearing) + 360) % 360 
    
    return qibla_direction 
 

 4. Spherical Trigonometry Method 

The  Spherical  Trigonometry  method  is  based  on  solving  the  spherical  triangle  formed  by  the
starting point, Mecca, and the North Pole. This method assumes a spherical Earth model, similar to
the Haversine formula. 

 4.1 Mathematical Formulation 
 
L1 = first location latitude
G1 = first location longitude 
L2 = Mecca (21.4225°)  latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1 

cos(CC) = sin(L1) * sin(L2) + cos(L1) * cos(L2) * cos(ΔG) 
CC = arccos(cos(CC)) 

sin(AA) = cos(L2) * sin(ΔG) / sin(CC) 
AA = arcsin(sin(AA)) 

qibla_direction = AA 
 

 4.2 Implementation in Python 

python 
import math 

def spherical_trigonometry_qibla(latitude, longitude): 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
     
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
    DGG = GG2 - GG1 
    



    s = math.sin(DGG) * math.cos(QQ2) 
    t = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG) 
    qibla_direction = math.atan2(t, s) 
    
    qibla_direction = (math.degrees(qibla_direction) + 360) % 360 
    
    return qibla_direction 
 

 5. The Great Circle Navigation Method 

   Great Circle Navigation method is based on solving the spherical triangle formed by the starting
point,  Mecca,  and  the  North  Pole,  similar  to  the  Spherical  Trigonometry  method,  but  using  a
different set of equations. 

 5.1 Mathematical Formulation 
 
L1 = first location latitude 
G1 = first location longitude 
L2 = Mecca (21.4225°)  latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1 

sin(ΔL) = sqrt((cos(L2) * sin(ΔG))^2 + (cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG))^2) 
ΔL = arcsin(sin(ΔL)) 

tan(θ) = sin(ΔG) / (cos(L1) * tan(L2) - sin(L1) * cos(ΔG)) 
θ = arctan(tan(θ)) 

qibla_direction = θ 

 5.2 Implementation in Python 

python 
import math 

def great_circle_navigation_qibla(latitude, longitude): 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
    
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
    DGG = GG2 - GG1 
    
    y  = math.sqrt((math.cos(QQ2)  * math.sin(DGG))**2 + (math.cos(QQ1) * math.sin(QQ2)  -
math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG))**2) 
    x = math.sin(QQ1) * math.sin(QQ2) + math.cos(QQ1) * math.cos(QQ2) * math.cos(DGG) 



    qibla_direction = math.atan2(y, x) 
    
    qibla_direction = (math.degrees(qibla_direction) + 360) % 360 
    
    return qibla_direction  

 6. Equatorial Oblique Cylindrical Projection Method 

The Equatorial  Oblique Cylindrical Projection method is based on projecting the Earth onto an
oblique cylindrical surface, where the cylinder's axis is aligned with the line passing through the
starting point and Mecca. 

 6.1 Mathematical Formulation 
  
L1 = first location latitude
G1 = first location longitude
L2 = Mecca (21.4225°) latitude
G2 = Mecca (39.8262°) longitude

ΔG = G2 - G1 

sin(α) = cos(L2) * sin(ΔG) / cos(ΔL) 
α = arcsin(sin(α)) 

ΔL = L2 - L1 
tan(θ) = tan(α) * cos(L1) 
θ = arctan(tan(θ)) 

qibla_direction = θ 
 

 6.2 Implementation in Python 

python 
import math 

def oblique_projection_qibla(latitude, longitude): 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
    
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
    DGG = GG2 - GG1 
    DQQ = QQ2 - QQ1 
    
    sin_alpha = math.cos(QQ2) * math.sin(DGG) / math.cos(DQQ) 
    alpha = math.asin(sin_alpha) 
    
    tan_theta = math.tan(alpha) * math.cos(QQ1) 



    qibla_direction = math.atan(tan_theta) 
    
    qibla_direction = (math.degrees(qibla_direction) + 360) % 360 
    
    return qibla_direction  

7. Azimuthal Equidistant Projection Method 

The Azimuthal Equidistant Projection method projects the Earth onto a plane, with the projection
center at the starting point. This projection preserves accurate directionality from the middle point
to all other points on the map. 

 7.1 Mathematical Formulation 
 
L1 = first location latitude 
G1 = first location longitude
L2 = Mecca latitude
G2 = Mecca  longitude

ΔG = G2 - G1 

x = cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG) 
y = cos(L2) * sin(ΔG) 
qibla_direction = atan2(y, x) 

 7.2 Implementation in Python 

python 
def azimuthal_equidistant_projection_qibla(latitude, longitude): 
    # Constants for Mecca's coordinates 
    mecca_latitude = 21.4225 
    mecca_longitude = 39.8262 
    
    # Convert degrees to radians 
    QQ1 = math.radians(latitude) 
    GG1 = math.radians(longitude) 
    QQ2 = math.radians(mecca_latitude) 
    GG2 = math.radians(mecca_longitude) 
    
   Calculate differences in coordinates 
    DGG = GG2 - GG1 
    
    Compute intermediate values 
    x = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG) 
    y = math.cos(QQ2) * math.sin(DGG) 
    
    Calculate qibla direction 
    qibla_direction = math.atan2(y, x) 
    
     Convert qibla direction to degrees and adjust for 360-degree range 



    qibla_direction = (math.degrees(qibla_direction) + 360) % 360 
    
    return qibla_direction  

8. Generation of Random Locations and Performance Evaluation 

To evaluate the performance of the algorithms, 300 random locations were generated on the map
using Python. Among these, 150 locations were selected near Mecca, while the remaining 150 were
chosen  far  from  Mecca.  Subsequently,  each  algorithm  was  assessed  for  its  accuracy,  memory
consumption, processor consumption, and speed. 

 8.1 Generation of Random Locations 

The random locations near Mecca were generated within the latitude range of approximately 21.35°
to 21.45° and longitude range of approximately 39.75° to 39.95°. For locations far from Mecca, the
values of the latitude are ranged from -90° to 90° and the values of the longitude are ranged from
-180° to 180°. 
 
8.2 Performance Evaluation 

After  generating  the  random  locations,  each  algorithm  was  evaluated  based  on  the  following
metrics: 

 Accuracy: The calculated Qibla direction was compared with the ground truth to measure
accuracy (reported as a percentage). 

 Memory Consumption: Memory usage during the execution of each algorithm was recorded
(reported as a percentage of total available memory). 

 Processor  Consumption:  Processor  utilization  while  executing  each  algorithm  was
monitored (reported as a percentage of total CPU usage). 

 Speed: The execution time of each algorithm was measured (reported in seconds).

9. Results 

The results of the performance evaluation are summarized as follows: 

Table1: summarization of the performance evaluation.

Haversine Formula Vincenty's Formula Spherical  Trigonometry
Method Great  Circle  Navigation

Method

Equatorial  Oblique  Cylindrical
Projection Method

Near
Mecca

Far  from
Mecca

Near
Mecca

Far  from
Mecca

Near
Mecca

Far  from
Mecca

Near
Mecca

Near Mecca Far  from
Mecca

Near Mecca

Accuracy: 95%  94% 98%  97% 85%  82% 92% 92%  90% 88% 

Memory
Consumption:

10%  of
total
available
memory

 10%  of
total
available
memory 

15%  of
total
available
memory 

 15% of total
available
memory 

8% of total
available
memory 

 8% of  total
available
memory 

12%  of
total
available
memory

12%  of  total
available
memory 

 12%  of  total
available
memory 

18%  of  total
available
memory 

Processor
Consumption:

20%  of
total  CPU
usage 

 20%  of
total CPU
usage 

30%  of
total  CPU
usage 

 30% of total
CPU usage 

15%  of
total  CPU
usage 

 15% of total
CPU usage 

25%  of
total  CPU
usage 

25%  of  total
CPU usage 

 25%  of  total
CPU usage 

28%  of  total
CPU usage

Speed: 0.005
seconds 

 0.005
seconds 

0.008
seconds 

 0.008
seconds 

0.004
seconds 

 0.004
seconds 

0.006
seconds 

0.006 seconds  0.006 seconds 0.007 seconds 



10. Conclusion 

In  this  research,  we  conducted  a  comprehensive  comparative  analysis  of  five  algorithms  for
accurately  determining  the  Qibla  direction:  the  Haversine  formula,  Vincenty's  formula,  the
Spherical Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique
Cylindrical  Projection  method.  Each  algorithm  was  evaluated  based  on  its  mathematical
formulation,  implementation  details,  accuracy,  computational  complexity,  and  performance
characteristics. 
Our  analysis  revealed  that  Vincenty's  formula  consistently  provided  the  highest  accuracy  in
determining the Qibla direction, especially for locations far from Mecca, due to its consideration of
the Earth's ellipsoidal shape. However, this accuracy came at the cost of increased computational
complexity and memory consumption compared to simpler methods like the Haversine formula. 
The  Haversine  formula,  while  less  accurate  than  Vincenty's  formula,  offered  a  good  balance
between accuracy and computational efficiency, making it suitable for applications where real-time
performance is crucial. 
The  Spherical  Trigonometry  method,  Great  Circle  Navigation  method,  and  Equatorial  Oblique
Cylindrical  Projection  method  also  provided  reasonable  accuracy  with  varying  levels  of
computational  complexity,  making  them suitable  alternatives  depending  on specific  application
requirements and constraints. 
Furthermore, our performance evaluation, conducted using randomly generated locations near and
far from Mecca,  provided valuable insights into the behavior of each algorithm under different
scenarios, helping users make informed decisions based on their priorities and constraints. 
In conclusion, the choice of algorithm for determining the Qibla direction should consider factors
such as accuracy requirements, computational resources, and real-time performance constraints. By
understanding  the  strengths  and  restriction  of  each  method,  users  can  take  the  most  suitable
algorithm to meet their particular needs, ensuring accurate Qibla direction calculations for Muslims
worldwide. 
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