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a b s t r a c t 

To overcome deficiencies with existing approaches a new cohesive zone model is introduced and trialled 

in this paper. The focus is on rate-dependent cohesive zone models which have appeared in the recent 

literature but can be shown to suffer unrealistic behaviour. Different combinations of material response 

are examined with rate effects appearing either in the bulk material or localised to the cohesive zone or 

in both. A benefit of using a cohesive-zone approach is the ability to capture plasticity and rate effects 

locally. Introduced is a categorisation of bulk-material responses and cohesive zone models with partic- 

ular prominence to the role of rate and plasticity. The shape of the traction separation curve is shown 

to have an effect and captured in this paper with application of a trapezoidal cohesive zone model. Rate 

dependency for the cohesive zone model is introduced in terms of a rate-dependent dashpot models ap- 

plied either in parallel and/or in series. Traditionally, two possible methods are adopted to incorporate 

rate dependency, which are either via a temporal critical stress or a temporal critical separation. Applied 

singularly, tests reveal unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive 

model introduced here couples the temporal responses of critical stress and critical displacement and is 

shown to provide for a stable realistic solution to dynamic fracture. Dynamic trials are performed on a 

cracked specimen to demonstrate the capability of the new approach. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Monotonic and fatigue crack growth can be modelled by using a

ethod called the Cohesive Zone Model (CZM), which has become

he focus of the research in the area of fracture mechanics because

f its ability to overcome limitations of other methods founded

n linear elastic fracture mechanics (LEFM). The initial concept of

he CZM was introduced by Dugdale (1960 ) and Barenblatt (1962 ).

hey considered the fracture process zone as a small area ahead of

he crack tip, where the normal stress perpendicular to the crack

irection of travel is constant and equal to the yield stress accord-

ng to Dugdale but decreases with deformation and vanishes at

eparation according to Barenblatt. 

The CZM is founded on a traction separation law (TSL) and ac-

ording to this law, material damage starts when traction reaches a

ritical value called the critical cohesive stress σ c . The crack prop-

gates when the displacement jump between the cracked-material

urfaces reaches a critical value δc at which point the cohesive
∗ Corresponding author. Tel.: + 44 7557673997. 
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tress becomes zero and all the cohesive energy �o is dissipated.

he CZM gained greater acceptance when Hillerborg et al. (1976 )

nalysed numerically, crack-growth in a brittle material using a

ilinear cohesive zone model (BCZM) together with the finite el-

ment method (FEM). This was followed by Needleman (1987 ),

ho introduced the polynomial CZM and subsequently, the expo-

ential CZM ( Needleman, 1990 ). Scheider (2001 ) introduced the

artly constant CZM, which is similar to Needleman’s polynomial

odel but with a flat region in the middle. The trapezoidal co-

esive zone model (TCZM), which is of particular interest in this

ork, was introduced by Tvergaard and Hutchinson (1992 ). A bode

f contention in the literature is the importance of the shape of

he traction separation curve underpinning the cohesive zone ap-

roach. Some authors claim that the shape hardly influences frac-

ure simulation results ( Tvergaard and Hutchinson, 1992; Needle-

an, 1990; Siegmund and Needleman, 1997; Alfano et al., 2004 ),

hilst other investigations demonstrate that the shape does in-

eed matter ( Alfano et al., 2004; Falk et al., 2001; Zhang et al.,

003 ). This issue is revisited in this paper by contrasting the trape-

oidal cohesive zone model (TCZM) with the bilinear cohesive zone

odel (BCZM). It is demonstrated that under the constraint of in-

ariant toughness the shape of the traction-separation curve does

ndeed have an effect. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.04.002
http://www.ScienceDirect.com
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List of symbols 

�o critical cohesive energy 

�rate rate-dependent cohesive energy 

σ c critical cohesive stress 

δc critical separation 

δo instantaneous applied displacement 

δ1 shape parameter for the linear and trapezoidal 

model respectively 

δ2 second shape parameter of the trapezoidal model 

δp plastic separation 

δe elastic separation 

δf final separation at fracture 

δcoh separation in the cohesive element 
˙ δ separation rate 
˙ δD separation rate at the dashpot 

σ cohesive stress 

σ Y yield stress 

ϑ Poisson’s ratio 

σ D stress at the dashpot 

E elastic modulus 

E p plastic modulus 

C R Rayleigh surface wave speed 

G c total dissipated energy per unit area 

G 

p dissipated plastic energy in the cohesive zone per 

unit area 

G 

p rate rate-dependent plastic dissipated energy in the co- 

hesive zone per unit area 

ɛ coh strain at the cohesive zone 

ɛ e elastic strain 

W 

e elastic strain energy per unit area 

W 

� dissipated energy per unit area due to the fracture 

process 

W 

p dissipated energy per unit area due to plastic defor- 

mation in the bulk material 

W 

d total work done per unit area by the external load 

W 

D dissipated energy per unit area in the dashpot 

η material viscosity 

B parameter representing the rate dependency of the 

cohesive material 

B 1 parameter representing the rate dependency of the 

cohesive material 

σ rate 
c rate-dependent critical stress 

δrate 
c rate-dependent critical separation 

δmax the separation at the onset of unloading 

σ max the stress at the onset of unloading 

σ limit upper limit on the rate-dependent critical stress 

W 

�rate 

limit 
upper limit on the rate-dependent fracture energy 

Abbreviation 

CZ cohesive zone 

CE cohesive element 

CZM cohesive zone model 

BCZM bilinear cohesive zone model 

TCZM trapezoidal cohesive zone model 

LEFM linear cohesive zone model 

TSL traction separation law 

QS-B quasi-static simulation using the rate- 

independent bilinear model 

QS-T quasi-static simulation using the rate- 

independent trapezoidal model 

DYN- σ rate 
c -B dynamic simulation using the stress rate- 

dependent bilinear model 
a  
DYN- σ rate 
c -T dynamic simulation using the stress rate- 

dependent trapezoidal model 

DYN- δrate 
c -B dynamic simulation using the separation rate- 

dependent bilinear model 

DYN- �rate 
c -B dynamic simulation using the new rate- 

dependent bilinear model 

DYN- �rate 
c -T dynamic simulation using the new rate- 

dependent trapezoidal model 

It is well documented that the CZM in its standard (rate-

ndependent) forms provide an effective approach for the numeri-

al analysis of the failure for a range of materials. This is essentially

ecause of the insensitivity of the crack and certain bulk materials

o strain rate and crack velocity. This is not true for all materials

owever and rate sensitivity can manifest itself in a crack at rate

acing greater resistance from the surrounding material along with

ther effects such as crack branching. The standard CZM has been

ound to overestimate crack speeds in the case of dynamic frac-

ure ( Valoroso et al., 2014 ). The predicted crack speed can reach

he Rayleigh surface wave speed C R of the material yet experimen-

ally the maximum crack growth speed is significantly lower than

 R even for very brittle materials ( Ravi-Chandar, 1998 ). To achieve

 better representation of the physics it is necessary to incorpo-

ate rate dependency either in the CZM or the bulk material or

ossibly both. The literature contains examples of research with

ate-dependent behaviour in the bulk material combined with a

ate-independent traction separation law under monotonically ap-

lied loading. Ortiz and Pandolfi (1999 ) for example used this ap-

roach and demonstrated good agreement with the experimental

ata and argued that through this approach the CZM captures the

ate dependency of the failure process. Similarly, Song et al. (2006 )

nd Zhou et al. (2004 ) successfully applied the approach to asphalt

oncrete and reinforced aluminium, respectively. Zhou et al. (2005 )

ointed out however that the success of the study of Ortiz and

andolfi (1999 ) was limited to ductile materials and was success-

ul because of the intrinsic timescale associated with ductility. The

pproach failed to reproduce existing experimental crack propaga-

ion data of pre-strained brittle Polymethyl methacrylate (PMMA).

ostanzo and Walton (1998 ) asserted that the rate-independent

ZM is unable to represent the experimental results from the liter-

ture, regardless of the type of the traction-separation law and the

racture criterion used. A similar conclusion was reached by Langer

nd Lobkovsky (1998 ) and again Costanzo and Walton (1997 ). The

se of a rate-dependent CZM is therefore recommended ( Zhou et

l., 2005; Costanzo and Walton, 1998; Langer and Lobkovsky, 1998;

ostanzo and Walton, 1997 ), where the cohesive traction σ is re-

ated not just to the crack separation δ, but also to separation rate
˙ , i.e. σ = f ( δ, ˙ δ) ; a relationship first pioneered by Glennie (1971 ).

lennie concluded that the reason behind the observed reduction

n crack speed with increase in strain rate is an increase in stress

evels in the vicinity of the crack tip. Further developments to

lennie’s work has been done by Freund and Lee (1990 ), Costanzo

nd Walton (1998 ), (1997 ) and Xu et al. (1991 ). A negative feature

f these approaches however is unrealistically large values for the

tress in the cohesive zone and associated crack arrest. A related

ut alternative approach is adopted by Valoroso et al. (2014 ) and

hou et al. (2005 ) who employed a CZM with critical traction in-

ependent of rate but involving temporal changes in fracture en-

rgy along with critical separation. It is demonstrated in this pa-

er however that this approach can lead to unrealistic separation

alues and crack tearing ahead of the crack tip. 

The model proposed in this paper is designed to overcome

hese identified limitations since it is apparent from the liter-

ture that presently no optimum CZM exists that can simulate
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Fig. 1. Mode I cohesive zone model. 

t  

u  

S  

p  

t  

d  

a  

c  

d  

fi  

v  

t  

t  

b  

l  

c  

b  

s  

c  

b  

r  

f  

t  

a  

r  

t  

p  

c  

e  

b

2

 

c  

a  

c  

t  

c  

p  

s  

l  
he range of crack growth physics met in practice. The CZM

sed as a vehicle to investigate these issues is introduced in

ection 2 and is the trapezoidal model as this is relatively sim-

le and localised plastic behaviour is readily identified. In addi-

ion, standard rate-independent CZMs are considered along with

ifferent bulk-material models to highlight the limitations of this

pproach. To achieve a proper understanding of how rate effects

an be incorporated into the trapezoidal CZM, relatively benign

ashpot models are incorporated into the CZMs in various con-

gurations in Section 3 . These models provide a relatively simple

ehicle for problem visualisation and assessment of the different

ypes of behaviours. Focus here is on Mode I fracture as this is

he most prevalent failure mode in fracture mechanics. An added

onus with dashpot models is that they can facilitate analytical so-

utions, which can then be explored to great depth. In addition,

ombinations of bulk material responses with CZMs can readily

e assessed. The approach accommodates different localised re-

ponses, which is necessary as the behaviour in the cohesive zone

an be expected to depart significantly from the original virgin

ulk material. Arising out of the analysis in Section 3 is a new

ate-dependent model, which is introduced in Section 4 . Section 5
ocuses on energy transfers invoked by the various dashpot models

o provide greater insight into the behaviour of the cohesive zone

pproach. Discussed in Section 6 is the implementation of the new

ate-dependent model arising out of the analysis in previous sec-

ions. The new model is incorporated into the commercial software

ackage ABAQUS (via a bespoke UMAT routine) and tested on a

racked specimen subject to different loading rates. The difficulties

xperienced with existing approaches are shown to be overcome

y the new approach. 

. Standard cohesive zone models 

The cohesive concept is depicted in Fig. 1 which depicts a

racked domain and a cohesive zone representing the damage

head of the crack tip. Also depicted is a tensile element in the

ohesive zone whose behaviour is dictated by the trapezoidal

raction separation law highlighted in the figure. The trapezoidal

ohesive zone model (TCZM) is adopted for this study because it

rovides reasonable flexibility arising from the extended parameter

et { δ1 , δ2 , δc , σ c }. This can be used for example to arrive at the

inear cohesive zone model (LCZM) on setting δ = δ = 0 or the
1 2 
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bilinear cohesive zone model (BCZM) with δ1 = δ2 � = 0 and thus

facilitates investigations into the influences of different traction

separation curves. 

For a pre-defined traction separation law (TSL), two cohesive

parameters are usually sufficient to simulate the fracture process.

The most frequently used parameters in the literature are the

cohesive-energy or toughness G c and critical cohesive traction σ c .

The critical separation δc can be used in place of G c but does suf-

fer the disadvantage of not being directly measurable. It is impor-

tant to appreciate that the cohesive approach is an approach that

represents damage as a single-tearing crack, so δc is generally not

physically observable. The area under the traction separation curve

represents the total dissipated energy (per unit area) and typically

accounts for energy dissipated due to local plasticity and the en-

ergy that is required to form new surface. The ability of the cohe-

sive zone element to represent the local dissipation mechanism of

plasticity is a particular advantage of the approach. It provides for

example elastic-plastic fracture-mechanics analysis for an elastic-

bulk material with the assumption that plasticity is localised at the

crack tip. The extent of the plasticity is accounted in the TCZM by

the two parameters δ1 and δ2 . The toughness (fracture energy) G c 

is represented by the area under the traction separation curve and

is represented mathematically as 

G c = 

∫ δc 

0 

σ ( δ) dδ (1)

which for the trapezoidal traction-separation law shown in

Fig. 1 gives 

G c = 

(∫ δ1 

0 

σ ( δ) dδ + 

∫ δc 

δ2 

σ ( δ) dδ

)
+ 

∫ δ2 

δ1 

σ ( δ) dδ

= ( A 1 + A 3 ) + A 2 = �o + G 

p = 

(
σc 

2 

δ1 + 

σc 

2 

( δc − δ2 ) 

)
+ σc ( δ2 − δ1 ) = 

σc 

2 

( δ2 − δ1 + δc ) (2)

where toughness G c is the total dissipated energy (i.e. energy dissi-

pated per unit area), G 

p is the plastic dissipated energy (accounting

for local plasticity), �o is the critical cohesive energy (accounting

for surface formation), σ is the cohesive traction, σ c is the criti-

cal cohesive traction, δ1 is the separation at which σ first reaches

σ c , δ2 is the displacement at which damage is formally assumed

to start, and finally δc is the critical cohesive separation, at which

separation occurs. 

The traction separation law depicted in Fig. 1 is represented

mathematically as 

σ ( δ) = σc 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

δ

δ1 

i f 0 < δ < δ1 

1 i f δ1 ≤ δ ≤ δ2 

δc − δ

δc − δ2 

i f δ2 < δ < δc 

(3)

It is important to appreciate that although this relationship pro-

vides the cohesive-energy (per unit area) 

�o = 

σc 

2 

( δ1 − δ2 + δc ) (4)

and the plastic-energy (per unit area) 

G 

p = σc ( δ2 − δ1 ) (5)

identified with particular areas under the traction separation curve

(see Fig. 1 ), this association is essentially a matter of choice. The

association of particular dissipation mechanisms with particular

features of the traction separation curve is nothing more than a

contrivance. Note also that the region [0, δ1 ] is primarily included

to avoid an abrupt change in behaviour which can be problem-

atic for some numerical solvers, however, this region is not strictly
ecessary and does not affect the analysis results. If the model

ndergoes unloading before reaching the critical stress, then the

nloading-path taken is identical to the loading path. Beyond the

ohesive critical stress however damage is permanent and conse-

uently the element stiffness decreases. The new stiffness value is

 = σmax / δmax , where σ max and δmax are the stress and separation

t the onset of unloading, respectively. The stress at unloading and

eloading is evaluated from σ (δ) = Kδ as depicted in Fig. 1 . 

The theory presented thus far takes no account of time or rate

nd possible mechanisms for introducing these aspects is discussed

n the Section 3 but prior to that it is of interest to examine various

ulk-material models incorporating a rate-independent CZM. 

.1. Rate-independent CZMs 

Shown in Fig. 1 is a depiction of how the cohesive approach is

rganised and a particular feature worth highlighting is the mate-

ial element depicted representing damaged material in the cohe-

ive zone. It is possible to represent the behaviour of this material

lement by a combination of one-dimensional springs, dashpots,

liders, and cohesive elements. A number of such arrangements

f interest in this study are depicted in Fig. 2 . These can be

onsidered in tandem with 1-D representations of bulk-material

esponses using similar elements as depicted in Fig. 3 . Organising

aterial behaviours in this manner provides insight and a certain

egree of control and in addition allows for detailed analysis,

hich can highlight wanted and/or unwanted responses. The co-

esive elements depicted in Fig. 2 are all derivable from the trape-

oidal traction separation law (TSL) on various setting of δ1 and δ2 .

t is of interest to explore and investigate the deficiencies in these

imple models to motivate the selection of the final model. In the

iscussion that follows the bulk-material behaviour is identified by

ppercase letters {A, B, C, D} and cohesive models by the lowercase

etters {a, b, c, …, p} (see Figs. 2 and 3 ). For example (A-a) refers

o a linear material with a linear cohesive element (on setting

1 = δ2 = 0 ) and (C-f) means an elastic, rigid-plastic bulk material

nd a rate-dependent trapezoidal cohesive element. Analysis is

estricted to subjecting a prismatic element to displacement δo for

 range of material models and cohesive element combinations. 

Although the main focus in this paper is on the inclusion of

ate effects it is insightful also to explore quasi-static loading of

ate-independent models to provide a base on which to construct

ore complex models. The cohesive elements shown in Fig. 2 (a,

, c, and d), are rate-independent linear, bilinear, trapezoidal (with

1 = 0 ) and trapezoidal cohesive elements. Recorded in the litera-

ure is the successful application of these elements to quasi-static

racture processes for bulk-material Models (A and C) depicted

n Fig. 3 . Limited research ( Ortiz and Pandolfi, 1999; Song et al.,

0 06; Zhou et al. 20 04 ) has been performed on the use of rate-

ndependent cohesive elements with rate-dependent bulk-material

odels of the type depicted in Fig. 3 (B and D). However, this ap-

roach has proven insufficient to represent the experimental dy-

amic crack results (see references Zhou et al., 2005; Costanzo

nd Walton, 1998; Langer and Lobkovsky, 1998, Costanzo and Wal-

on, 1997 ) and a rate-dependent cohesive model is a possible

olution. 

.1.1. Model (A-a) 

Combining elements from Fig. 3 (A) and 2(a) provides the sim-

lest cohesive model consisting of a linear bulk-material and a

inear cohesive element. The rate-independent curve in Fig. 4 (a)

hows the stress displacement response. A particular feature of the

odel is that both the spring and the cohesive part experience

he same stress, but strain is additive, i.e. σo = σ e = σ coh and ε o =
 

e + ε coh , where ɛ e is the elastic strain (defined as ε e = δe / l o ) and

 

coh is the strain in the cohesive part ( defined as ε coh = δcoh / l o ),
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Fig. 2. Elementary material elements in the cohesive-zone. 

Fig. 3. Elementary bulk-material models. 
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Fig. 4. Stress–displacement curve for the cohesive element in an elastic bulk material. 
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where l o is the initial length of a piece of identified material local

to and containing an element of the CZ. 

Consider an initial displacement δo applied to the system and

let ε o = δo / l o and σo = E ε o , where E is Young’s Modulus of the bulk

material. If σ o ≤ σ c , then ε o = ε e , σ = E ε e , δe = δo = ε o l o and the

material element behaves like an elastic spring. However, if σ o >

σ c , then the cohesive element makes a contribution and since the

total separation is additive (i.e. δo = δe + δcoh ), the stress can be

represented as 

σ e = σc 

(
1 − δcoh 

δc 

)
= E ε e = E 

δe 

l o 
(6)

which can be solved for δe to give 

δe = δc 

[ (
1 − δo 

δc 

)(
−1 + 

E δc 

σc l o 

)
] 

(7)

which is applicable provided δo ≤ δc , otherwise the element will

fail and the material will separate. 

In order to better understand the crack driving force it is in-

sightful to explore energy transfers that take place between the

bulk material, cohesive element and the surroundings. In this case

 

e = 0 . 5 σA δe and W 

e = U 

e /A = 0 . 5 σδe , where U 

e is the elastic

strain energy, W 

e is the elastic strain energy (per unit area) and

δe is elastic displacement. For σ o ≤ σ c the situation is trivial and

the total work done by the applied load (per unit area) W 

d is equal

to W 

e . For σ o > σ c the value of δe is calculated from Eq. (7) and

σ e from Eq. (6) and the elastic strain energy per unit area is given

by W 

e = 0 . 5 σ e δe and the energy diverted to material separation is

 

� = 

1 

2 

( σc + σ e ) δcoh (8)

where W 

� is the cohesive energy per unit area, δcoh is separation

at the cohesive element and the total work done (per unit area) is

 

d = W 

e + W 

� . Energy dissipation is an important aspect in co-

hesive models as is apparent in this simple case which features

non-recoverable energy W 

� . 

2.1.2. Model (B-a) 

The addition of a dashpot to the bulk-material model above

gives rise to rate-dependent fracture behaviour. In this model

stress is identical in the spring, dashpot and cohesive part, but

strain is additive and temporal behaviour is a feature, i.e. σo =
σ e = σ D = σ coh and ε o = ε e (t) + ε D (t) + ε coh , where ɛ e (t), ɛ D (t),
and ɛ coh are the elastic strain ( ε e (t) = δe (t) / l o ), the strain in the

dashpot at any time ( ε D (t) = δD (t) / l o ), and the strain in the cohe-

sive element ( ε coh = δcoh / l o ) that is irreversible (does not change

for fixed δo ), respectively. 
If an initial instantaneous displacement δo is applied to this

ystem, then this will result in an initial strain ε o = δo / l o and ini-

ial stress σo = E ε o . The precise subsequent response of the sys-

em depends on the magnitude of the stress σ o . If σ o ≤ σ c , then

he cohesive element is not involved and ˙ ε o = ˙ ε e + ˙ ε D = E −1 ˙ σ +
−1 σ , where η is a material parameter akin to viscosity. With a

onstant applied displacement ˙ ε o = 0 so E −1 ˙ σ + η−1 σ = 0 , which

an be solved to provide temporal stress σ (t) = σo exp( −E η−1 t )

nd in this case σ ( t ) is always less than σ c since σ o ≤ σ c . If

n the other hand σ o > σ c , then the cohesive element is in-

olved with displacement divided initially between the spring

nd the cohesive element, i.e. δo = δe (0) + δcoh , with the dash-

ot not initially involved. The subsequent response of the model

s one of relaxation of stress, since σ e (t) = σ e (0) exp( −E η−1 t ) and

he dashpot displacement is obtained from , which gives δD (t) =
e (0)( 1 − exp( −E η−1 t ) ) . 

The energy dissipated by the dashpot is evaluated from the rate

t which work is done (per unit area) by the stress field, i.e. ˙ W 

D 
d 

=
 o σ D ˙ ε D . Substitution of σ D = η ˙ ε D and integration gives 

 

D ( t ) = 

1 

2 

σ e ( 0 ) δe ( 0 ) 

(
1 −

(
exp 

(
− E 

η
t 

))2 
)

(9)

The energy transfers to the system, cohesive element, dashpot

nd spring are readily determinable with knowledge of the stress

nd strain rates with total work done (per unit area) satisfying

he equation W 

d (t) = W 

e (t) + W 

D (t) + W 

� . An important aspect

f the relaxation process for this model is that δcoh is invariant. 

.1.3. Model (C-a) 

Elastic-plastic fracture mechanics is of industrial importance as

lasticity provides a mechanism for energy dissipation and con-

equently increased toughness. One mechanism for incorporating

lasticity is to assume an elastic-plastic bulk-material model like

hat depicted in Fig. 3 (C). Viscous behaviour is absent in this

ase and localised softening is achieved with the cohesive ele-

ent shown in Fig. 2 (a). The stress–displacement curve for the

lastic–plastic material, with a linear cohesive element is shown

n Fig. 5 (a). As with the previous serial models, stress is com-

on to all elements, i.e. σo = σ e = σ p = σ coh , and strain is addi-

ive, ε o = ε e + ε p + ε coh . Note also that separation at fracture δf has

ontributions from bulk-material plasticity and the cohesive ele-

ent, i.e. δ f = δp + δc . The behaviour of this system depends on

he magnitude of the stress σ o . If σ o ≤ σ Y , σ c , then elastic be-

aviour is dominant and the stress will be evaluated from σo = σ e ,

n this case ε e = ε o = δo / l o with δe = δo and W 

e = 0 . 5 σo δe . If how-

ver σ o > σ Y , with plastic response approximated by the lin-

ar expression σ = σY + E p ̄ε p , where for uniaxial tension effective
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Fig. 5. Stress–displacement curve for the cohesive element in an elastic-plastic bulk material. 
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tress σ̄ = σ and effective plastic strain ε̄ p = ε p (since at this in-

tance it is assumed ε coh = 0 ), then the strain ε o = ε e + ε p . Con-

equently, the applied stress to the element can be evaluated as

o / l o = σ/E + ( σ − σy ) / E p , which is valid when σ ≤ σ c , where E p 

s the plastic modulus. Energy is stored elastically but plastic dis-

ipation takes place and is equal to 

 

p = 

1 

2 

( σY + σ ) δp (10) 

here δp is the extent of plastic deformation and evaluated from
p = δo − δe . 

Finally if σ > σ c , the total strain ε o = ε e + ε p + ε coh with

 

coh = δc (1 − σ e / σc ) / l 0 , ε p = ( σc − σy ) / E 
p and ε e = σ e /E. From

his the stress can be evaluated as 

δo 

l o 
= 

σ e 

E 
+ 

σc − σy 

E p 
+ 

δc 

(
1 − σ e 

σc 

)
l 0 

(11) 

here it is assumed throughout this section that σ Y < σ c because

o do otherwise would mean no plastic deformation is possible.

nergy is stored elastically but dissipated in terms of plastic dis-

ipation, as it evaluated from Eq. (10) with σ c replacing σ , and

nergy dissipated in propagating the crack as it evaluated from

q. (8) . The total work done (per unit area) is W 

d = W 

e + W 

p +
 

� . The principal feature of this model is the protection offered

o the crack through plastic-energy dissipation in the bulk mate-

ial. 

. Rate-dependent CZMs 

An extraordinarily useful bulk-material model is that of a linear-

lastic material depicted in Fig. 3 (A) and is particularly pertinent

f other non-linear behaviours are localised to the crack tip. It is

hus of interest to explore the use of a linear-elastic bulk-material

odel combined with rate-dependent cohesive models suggested

n the literature. Combinations involving plastic behaviour in the

ulk-material are also of some importance. 

.1. Model (A-i) 

Model (A-i) provides rate dependency in the cohesive domain

ut linear-elastic behaviour in the bulk material. A critical feature

f this particular set-up is a critical stress that is a function of the

eparation rate. An unwelcome aspect is the possible unbounded-

ess of the critical stress. In the parallel part of the model (see

ig. 2 (i)) the strain is the same and the stress is additive, but

etween this portion and the elastic bulk element the stress is

dentical and the strain is additive. In mathematical terms σo =
e = σ s , where σ s is the stress applied to the parallel system and
s = σ D + σ coh , ε o = ε s (∞ ) + ε e and ε coh = ε D , where ε s (∞ ) =

im t →∞ 

ε s (t) , is the strain in the parallel system at stationary equi-

ibrium. Observe that for this model the strain ɛ coh of the cohesive

lement is now a function of time. 

As with previous models if an initial instantaneous displace-

ent δo is applied to the system, its response depends on the

agnitude of σ o , where ε o = δo / l o and σo = E ε o . If σ o ≤ σ c , then
e = δo and W 

e = 0 . 5 σ e δe . If on the other hand σ o > σ c , then

he elastic displacement δe is evaluated from Eq. (7) and material

eparation at stationary equilibrium δ(∞ ) = δo − δe and the stress
e = E δe / l o . The material separation as a function of time is 

( t ) = δ( ∞ ) 

(
1 − exp 

(
−
(

E 

η

)
t 

))
(12) 

nd the dissipated energy in the dashpot is obtained from 

 

D ( t ) = 

1 

2 

σo δ( ∞ ) 

(
1 −

(
exp 

(
−
(

E 

η

)
t 

))2 
)

(13) 

here the total work done (per unit area) is W 

d (t) = W 

e (t) +
 

D (t) + W 

�(t) . 

If the rate-dependent fracture energy is defined to be equal

o the rate-independent cohesive energy plus the dissipated en-

rgy in the dashpot, then the previous equation becomes W 

d (t) =
 

e (t) + W 

�rate (t ) , where W 

�rate (t ) is the rate-dependent fracture

nergy. Furthermore, critical traction can be viewed as a function

f separation and separation rate, since σ rate 
c = σc + σ D . A further

ommon assumption is the linear relationship σ D = C σc , where

 is a parameter that is function of separation rate. This returns

n expression similar to that has used in reference ( Kubair et al.,

002 ), i.e. the rate-dependent stress relation can then be written

s: 

rate 
c 

(
˙ δ
)

= σc 

(
1 + B ̇

 δ
)

(14) 

here B is a material parameter reflecting the strength of rate

ependency. 

By using a similar procedure to the one used in Model (A-a) but

ith σ rate 
c instead of σ c for the critical cohesive stress the energy

ransfers in the model can be evaluated. 

.2. Model (A-e) 

An alternative possibility for including a dashpot is to use a

eries combination rather than a parallel one as in the model

bove. In the case of Model (A-e) a linear rate-independent CE (i.e.

he TCZM with δ = δ = 0 ) is selected in series with a dashpot
1 2 
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( Fig. 2 (e)) to form a rate-dependent CE and this element is con-

nected to a linear elastic bulk-material model ( Fig. 3 (A)). The re-

sponse of the rate-dependent cohesive element can be viewed as

a function of the separation speed, since δrate 
c = δc + δD , where δc 

is the rate-independent cohesive separation and δD is the dashpot

displacement. Setting δD = C δc and on letting C = B 1 ̇ δ provides 

δrate 
c 

(
˙ δ
)

= δc 

(
1 + B 1 ̇

 δ
)

(15)

which is identical to an expression applied in reference ( Zhou et

al., 2005 ) and where B 1 is a material parameter reflecting the

strength of rate dependency. 

The stress–displacement curve of the rate-independent and the

rate-dependent cohesive element is depicted in Fig. 4 (a). The en-

ergy calculation of this model is exactly the same as Model (A-a)

apart from using δrate 
c instead of δc to identify the critical sepa-

ration of the model. An unwelcome feature of the model is the

possible unboundedness of δrate 
c . 

3.3. Model (A-g) 

Combining the cohesive element shown in Fig. 2 (g) with the

material element shown in Fig. 3 (A), provides a rate-dependent

trapezoidal CE (with δ1 = 0) in an elastic bulk material. This model

is similar to Model (A-e) although an important feature of this

model is the incorporation of plastic energy dissipation. In this

CE the process zone is separated into a plastic part (represented

by the area under the traction separation curve between δ1 and

δ2 ) and damage part (represented by the area under the trac-

tion separation curve between δ2 and δc ). For this model the val-

ues of δ1 and δ2 are selected to be zero and 0.5 δc , respectively.

The critical rate-dependent separation δrate 
c is assumed to satisfy

Eq. (15) , which means that when the separation speed increases,

the value of the dissipated energy in plastic deformation and in the

process of generating new surfaces increases. Fig. 4 (b) shows the

stress–displacement curve of the rate-independent and the rate-

dependent cohesive element. 

To better understand the behaviour of this model it is pru-

dent to examine what energy transfers take place. Applying dis-

placement δo provides σo = E ε 0 and as with the previous models

the system’s response depends on the magnitude of this stress. If

σ o < σ c , then δe = δo and W 

e = 0 . 5 σ0 δ
e . If however σ o ≥ σ c ,

then two possibilities arise depending on the magnitude of δo . If

δo < δ2 + δe 
max , with δe 

max = σc /E, then elastic energy W 

e = 

1 
2 σc δe 

max 

is constant and the plastic energy dissipated is determined by

 

p = σc ( δo − δe 
max ) . Finally, if δo ≥ δ2 + δe 

max , then the crack propa-

gates giving rise to an increase in surface energy and a decrease in

the stored elastic energy and no further plastic dissipation. 

3.4. Model (C-e) 

The model arises from the combination of the cohesive el-

ement shown in Fig. 2 (e) with the material element shown in

Fig. 3 (C) is similar to Model (C-a), but in this model the cohe-

sive element is rate-dependent. In this CE the value of the critical

separation δc is assumed to be a function of the separation speed,

which means that as the separation speed is increased, the value

of the dissipated energy in the fracture process increases. Fig. 5 (a)

shows the stress–displacement curve of the rate-independent and

the rate-dependent cohesive elements. The energy calculation for

this model is similar to Model (C-a) but with δrate 
c from Eq. (15) in

place of δc . 

3.5. Model (C-g) 

This model is similar to Model (C-e), but in this model a

rate-dependent trapezoidal cohesive element is used as shown in
ig. 2 (g). In this CE the value of the critical separation δrat 
c is cal-

ulated from Eq. (15) . As regards the traction separation law, δ1 is

ssumed to be zero and δ2 is set equal to 0 . 5 δrate 
c . A feature of this

odel is that with an increase in separation speed the dissipated

nergy increases due to plastic deformation and new surfaces for-

ation. Shown in Fig. 5 (b) is the stress–displacement curve of the

ate-independent and the rate-dependent cohesive elements. 

. New rate-dependent cohesive model 

To overcome limitations with existing rate-dependent cohesive

odel a new model is introduced in this study. A systematic ap-

roach has been adopted to better understand the behaviour and

imitations of said models and it is expected that any new model

hould not suffer unrealistic behaviour typically observed with ex-

sting approaches. To keep things reasonably simple the bilinear

nd the trapezoidal cohesive model are incorporated into the new

odel to simulate the dynamic crack growth processes. A feature

f the new model is dashpots in both series and parallel to counter

nrealistically high values of δc and σ c observed when dashpots

re applied singularly. 

.1. Model (A-m) 

The proposed new rate-dependent linear cohesive element is

hown in Fig. 6 (m). The cohesive element consists of two parts one

f which is a parallel combination of a rate-independent CE in par-

llel with a dashpot to provide a rate-dependent critical stress. This

art is active when the rate-dependent cohesive stress is less than

he identified stress limit σ limit thus providing a bounded critical

tress. The value of σ limit is set so that the area under the trac-

ion curve defined by σ limit is equal to an experimentally obtained

pper limit on fracture energy. Thus, for σ rate 
c < σlimit , Eq. (14) ap-

lies and the separation is held constant at the critical separation

sed for the rate-independent cohesive model. At the point when
rate 
c reaches its limit σ limit this part of the cohesive element be-

omes inactive and the second part consisting of a series dash-

ot and rate-independent CE is activated. In this CE the critical

tress is equal to σ limit and the critical separation is again equal

o that used in the rate-independent model. This part of the co-

esive model provides a rate-dependent CE in which the critical

tress is constant at σ limit and a critical separation that increases

ith rate satisfying Eq. (15) . The energetic behaviour of this model

s similar to Model (A-a) but with using σ rate 
c instead of σ c for

o < σ limit and if σ o ≥σ limit , then δrate 
c is used instead of δc . To

emonstrate this explicitly consider an initial displacement δo ap-

lied to this system, and set ε o = δo / l o and σo = E ε o . As with pre-

ious cases the behaviour of the system depends greatly on the

agnitude of σ o . If σo ≤ σ rate 
c (where the inequality σ rate 

c ≤ σlimit 

s enforced by design), then ε o = ε e , σ = E ε e , δe = δo = ε o l o and

 

e = 0 . 5 σ δe . If on the other hand σo > σ rate 
c , then two possibil-

ties arise, i.e. σ rate 
c ≤ σlimit or σ rate 

c > σlimit , where in the latter

ase critical cohesive stress is set equal to σ limit and δrate 
c is used

n place of δc for energy calculations. 

. Energy calculations 

In this section a numerical description of the energy transfers

s presented to support the theoretical descriptions provided in

ections 2 –4 and to visually highlight the important behaviours

ound with the different models considered. Moreover, to dis-

over the best formulation for a rate-dependent cohesive zone

odel a number of dashpot configurations have been considered

n combination with a standard rate-independent cohesive element

long with the energy transfers involved. The material properties
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Fig. 6. New elementary rate-dependent material element in the cohesive zone. 

Table 1 

Material properties and process parameters. 

Length l o (mm) σ c (MPa) δc (mm) σ Y (MPa) �0 (N/mm) E (MPa) E p (MPa) δ1 (mm) 

10 340 0.17,647 300 30 72,0 0 0 1390 0 

δ2 mm Viscosity ( η) Pa s B s/m B 1 s/m Separation rate ( ̇ δ) m/s 

0.5 δc 10 30 60 0.1 0.02 5 10 20 

Fig. 7. Model (A-a) energy–displacement curve of a rate-independent CE in an elastic bulk material. 
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nd process parameters selected for the study can be found in

able 1. 

Depicted in Figs. 7 and 8 is an energy–displacement diagram

or a linear rate-independent CE embedded in an elastic bulk ma-

erial. From Fig. 8 it is evident that the crack growth is driven

y the stored elastic energy ( Dahlan, 2013 ). This is reflected by

 decrease in stored elastic energy originating at the point where

aterial separates along with an increase in cohesive energy. The

ehaviour of this model when a dashpot is added to the bulk ma-

erial (Model (B-a)) in order to represent the rate dependency is

hown in Fig. 9 . It is clear from this figure that the response is

ne of material relaxation rather than a rate-dependent fracture

odel. This is reflected in the relaxation of stored elastic energy
s opposed to driven crack propagation. An alternative is a parallel

ombination of dashpots to produce a rate-dependent cohesive el-

ment as in Model (A-i). In this case however, the dashpot is built

nto the cohesive element, which implicitly assumes rates local to

he crack feature predominantly. The local stress is dependent on

he viscosity associated with the dashpot and the rate of separa-

ion. This is reflected in the value of the parameter B in Eq. (14) ,

hich represents the rate dependency of the local damaged mate-

ial. A particular feature of this model is a critical stress which is

ot temporally invariant and increases with the separation speed,

hich could lead to unrealistic crack arrest. The behaviour of this

odel is shown in Fig. 10 , where it can be deduced from the rise

n energy that the critical stress is increasing with rate. Bearing



104 S. Salih et al. / International Journal of Solids and Structures 90 (2016) 95–115 

Fig. 8. Model (A-a) normalised elastic and fracture energy diagram. 

Fig. 9. Model (B-a) material relaxation response. 

Fig. 10. The increase in the value of energy at critical stress due to unrealistic in- 

creasing critical cohesive stress in Model (A-i). 

 

 

 

 

 

Fig. 11. The unrealistic increasing critical cohesive separation in Model (A-e). 

Fig. 12. Model (A-g) plasticity capture locally by using the trapezoidal rate- 

dependent CE. 

Fig. 13. Model (C-a) energy–displacement curve of a rate-independent CE in an 

elastic-plastic bulk material. 

 

e  

o  

s  

a  

i  
in mind that critical stress is the damage initiation mechanism in

the cohesive model an unrealistically high value can have negative

connotations. With this model the critical stress can reach levels

significantly higher than the yield stress of the bulk material lead-

ing to both crack arrest and unrealistic levels of plastic deforma-

tion in any finite element model. 
To avoid the possibility of a high critical stress a localised lin-

ar dashpot arrangement is an obvious possibility. Model (A-e) is

ne possibility consisting of a dashpot connected in series with a

tandard cohesive element, which leads to critical separation being

 function to the separation rate of the form of Eq. (15) . Although

t is claimed in reference ( Zhou et al., 2005 ) that the model can
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Fig. 14. Model (C-e) linear rate-dependent CE in an elastic-plastic material. 

Fig. 15. Model (C-g) trapezoidal rate-dependent CE in an elastic-plastic material. 
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Fig. 16. Model (C-m) effect of stress limit in the new linear rate-dependent CE in 

an elastic bulk material. 

Fig. 17. CT specimen dimensions. 
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rovide more accurate results, it is demonstrated in Section 6 that

he model has unrealistic behaviour at high strain rates. Fig. 11

hows the energy curves for Model (A-e), where it is apparent that

he value of the critical separation is increasing with separation

ate leading to high values at very high rates. 

It is evident that a new model is necessary to overcome the

imitations of both of the previous models. The proposed models

onsidered here for localised rate-sensitive behaviour combines the

lastic-bulk material element shown in Fig. 3 (A) with one of the

ate-dependent cohesive elements shown in Fig. 6. 

A concern however is the effect of plasticity both locally and

n the bulk material and therefore it is of interest also to exam-

ne models involving the bulk-material model depicted in Fig. 3 (C).
Table 2 

Type of simulations applied to a standard CT specimen. 

Model Analysis type Bulk material response C

QS-B Quasi-static Rate-independent S

QS-T Quasi-static Rate-independent S

DYN -B Transient dynamic Rate-independent S

DYN -T Transient dynamic Rate-independent S

DYN- σ rate 
c -B Transient dynamic Rate-independent R

DYN- σ rate 
c -T Transient dynamic Rate-independent R

DYN- δrate 
c -B Transient dynamic Rate-independent R

DYN- �rate 
c -B Transient dynamic Rate-independent R

DYN- �rate 
c -T Transient dynamic Rate-independent R
here are numerous approaches for simulating the fracture pro-

ess in an elastic-plastic material. An example is an elastic-bulk

aterial and plasticity captured locally in the cohesive element as

n Model (A-g) by using the trapezoidal model. This trapezoidal

odel could be rate-independent or rate-dependent depending

n the type of problem. The energy–displacement curve for this

odel is shown in Fig. 12 . Alternatively, the problem can be simu-

ated by using the bilinear rate-dependent or rate-independent co-

esive model with an elastic-plastic behaviour in the bulk mate-

ial as in Models (C-a) and (C-e), which provide the results shown

n Figs. 13 and 14 , respectively. Contrasting the results of Model
ohesive Zone response TSL Number of simulations 

tandard BCZM 2 

tandard TCZM 7 

tandard BCZM 4 

tandard TCZM 4 

ate-dependent BCZM 7 

ate-dependent TCZM 5 

ate-dependent BCZM 4 

ate-dependent BCZM 5 

ate-dependent TCZM 5 
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Table 3 

Cohesive model parameters. 

Cohesive parameter set Cohesive law �o (N/m) E coh (GPa) σ c (Pa) δc (m) δ1 (m) δ2 (m) 

1 BCZM 189,0 0 0 15,0 0 0 6 .0e8 0 .00,063 0 .0 0,0 04 0 .0 0,0 04 

TCZM 189,0 0 0 15,0 0 0 6 .0e8 0 .00,038,286 0 .0 0,0 04 0 .0 0 0,287,145 

2 BCZM 189,0 0 0 15,0 0 0 6 .0e8 0 .00,063 0 .0 0,0 04 0 .0 0,0 04 

TCZM 189,0 0 0 15,0 0 0 3 .5e8 0 .00,063 0 .0 0 0,023 0 .0,004,725 

3 BCZM 189,0 0 0 15,0 0 0 6 .0e8 0 .00,063 0 .0 0,0 04 0 .0 0,0 04 

TCZM 246,500 15,0 0 0 4 .6e8 0 .00,063 0 .0,0 0 0,307 0 .0,004,725 

4 TCZM 222,0 0 0 15,0 0 0 3 .1e8 0 .00,083 0 .0,0 0 0,207 0 .0,006,225 

Fig. 18. Load versus load line displacement for the BCZM & TCZM with equal fracture energy (189 N/mm) and critical stress. 

Fig. 19. Load versus load line displacement for the BCZM & TCZM with equal critical fracture energy (189 N/mm) and critical separation. 
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(A-g) ( Fig. 12 ) with the result of Model (C-e) ( Fig. 14 ) highlights

certain distinctive similarities. The advantage of analysis with plas-

ticity captured locally in a CZM is a much reduced analysis cost.

However, accuracy is an issue and the benefit of investigating the

effect of the TSL and the choice of the TCZM is manifest. In the

case of large-plastic deformation taking place in the bulk material,

then the advantages of localised plastic analysis are diminished.
owever, with a view that plastic behaviour in the damaged zone

s different from the virgin material then an appropriate cohesive

odel could be used to improve accuracy. A model of this type is

odel (C-g) and the associated energy–displacement curve is de-

icted in Fig. 15. 

The energy–displacement plots for the new rate-dependent co-

esive element can be found in Fig. 16 . Contrasting the results in
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Fig. 20. Load versus load–line displacement for the BCZM & TCZM. 

Fig. 21. Crack length–time curve for the 0.1 m/s loading speed under displacement control. 
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igs. 10, 11 and 16 demonstrates how the new model eliminates

he unrealistic behaviour in existing rate-dependent cohesive mod-

ls. To better demonstrate further the benefits of the new approach

he three competing approaches are tested in fracture simulations

pplied to a CT specimen depicted in Fig. 17 in the following

ection. 
. Monotonic fracture simulation in ABAQUS 

There are two methods for identifying cohesive behaviour in

he commercial finite element solver ABAQUS; the first method

s by specifying a cohesive traction between two adjacent sur-

aces; the main advantage of this method is that ABAQUS will
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Fig. 22. Crack length–time curve for the 1 m/s loading speed under displacement control. 

Fig. 23. Crack length–time curve for the 10 m/s loading speed under displacement control. 
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duplicate the nodes at the adjacent surfaces and connect them

through cohesive forces. Hence, the thickness of the cohesive zone

is approximately zero. The second method is by inserting cohe-

sive elements along the crack path between the bulk material el-

ements, by default the separation width of the cohesive element

defaults as unity in ABAQUS making the strain at the cohesive el-

ement equal to the separation. The cohesive behaviour in the sec-

ond type is defined through a cohesive material. This facilitates

a user-defined material subroutine, which can be used to specify

new non-standard cohesive behaviour of the type considered here.
The types of simulation performed in this study are shown

n Table 2 . Nine quasi-static simulations are performed on a CT

pecimen to check the effect of the TSL and the effect of plas-

icity. Of the nine, two make use of the BCZM and seven utilise

he TCZM with associated responses presented in Figs. 19 and

0 . This is followed by an investigation into the behaviour and

he limitations of methods (existing and new) used to capture

ate-dependent behaviour. Numerous transient-dynamic simula-

ions have been performed (see Table 2 ) and details are provided

ection 6.2 . 
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Fig. 24. Crack length–time curve for the 100 m/s loading speed under displacement control. 

Fig. 25. The crack initiation point of the separation rate-dependent model at 10 m/s loading speed. 
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.1. Plasticity effects 

Fracture simulations of a compact tension (CT) specimen which

imensions shown in Fig. 17 have been performed in ABAQUS by

sing the BCZM and repeated using the TCZM; first with an elastic-

lastic bulk material and second with an elastic-bulk material. The

eason for using these two models is to study the effect of the TSL

nd to show the benefit of using a CZM to capture plasticity lo-

ally. The numerical model consists of 7823 plane-strain elements

type CPE4R) and 100 cohesive elements (type COH2D4) ( ABAQUS

.13 User Guide, 2013 ). A mesh sensitivity analysis has been per-
ormed which confirms that converged results are attained. Involv-

ng a full-integration plane-strain element (CPE4) or increasing the

umber of elements in the bulk material or the cohesive zone,

as little impact on the simulation results presented. The mate-

ial properties for the bulk material in the numerical simulations

re { σy = 280 MPa , E = 193 GPa and ϑ = 0 . 29 } with cohesive pa-

ameters shown in Table 3. 

Shown in Figs. 18 and 19 are the plots relating load to load–

ine displacement (i.e. the reaction force as a function of the ap-

lied displacement measured at the loading point represented by

he two circular holes shown in Fig. 17 ) for the first two cohesive
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Fig. 26. The crack initiation point of the separation rate-dependent model at 100 m/s loading speed. 

Fig. 27. Stress–displacement curve of the new rate-dependent model. 

Fig. 28. Experimental energy–strain rate curve[28]. 

 

 

 

 

Fig. 29. Crack length as a function of the time at (B = 0.7 and B1 = 0.126) at 10 m/s 

loading speed. 

Fig. 30. crack length as a function of the time at (B = 0.7 and B1 = 0.126) at 100 m/s 
parameter sets contained in Table 3 . It is clear from these plots

that the shape of the traction separation curve has a noticeable ef-

fect on the load-line curves. This emphasises the importance and

influence of the type of TSL and associated cohesive parameters
 loading speed. 
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Fig. 31. The maximum stress reached by using the stress rate-dependent model under displacement control at 10 m/s loading speed. 

Fig. 32. The maximum stress reached by using the stress rate-dependent model under displacement control at 100 m/s loading speed. 
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n responses measured remotely from the cohesive zone. The re-

ults obtained are for the same specimen using either the BCZM

r the TCZM with invariant fracture energy and either critical trac-

ion fixed or critical separation fixed. This result is in agreement

ith the results obtained from many other authors ( Alfano et al.,

0 04; Falk et al., 20 01; Zhang et al., 20 03 ). Although the results

onfirm that the TSL can influence fracture behaviour the extent

f this influence depends on the geometry and material of the test

pecimen. If the specimen has high stiffness, then greater sensitiv-

ty to the shape of the TSL can be anticipated ( Alfano et al., 2004 ).
his point is made explicit in Fig. 20 , where load–line displace-

ent curves can be found for fracture simulations by using the

ohesive parameter set number 3 and 4 (see Table 3. ) contrasting

SLs in an elastic-plastic bulk material against a purely elastic bulk

aterial. From these curves, it is clear that the TCZM displays a

lear elastic-plastic response making it more appropriate than the

CZM for simulating fracture for an elastic-plastic bulk material yet

dopting only an elastic material for the analysis. It is clear from

ig. 20 that the TCZM gives a wide range of responses depending

n the cohesive parameters used. 
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Fig. 33. The maximum stress and the point of crack initiation by using the new rate-dependent model under displacement control at 100 m/s loading speed. 

Fig. 34. Crack speed as a function of the parameter B at 10 m/s loading speed. 
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6.2. Strain rate effect 

In this section the rate-dependent CZM is used to simulate the

fracture behaviour of a CT specimen subjected to different applied

loading speeds. For each loading speed a number of simulations

are performed which are: (i) rate-independent BCZM and TCZM;

(ii) stress rate-dependent BCZM and TCZM (i.e. critical stress is

function of separation rate), (iii) separation rate-dependent BCZM

(i.e. critical separation is function of separation rate) and finally;

(iv) the new rate-dependent BCZM and TCZM (i.e. the new ap-

proach proposed in this study). To enable crack length to be de-

fined, the crack tip is identified at a position where separation

equals the critical cohesive separation. Shown in Figs. 21–24 are

plots revealing the temporal response of crack length for the ex-

isting rate-dependent approaches with the BCZM at four loading

speeds i.e. 0.1, 1.0, 10 and 100 m/s, respectively. At the lowest rate

it is apparent on examination of Fig. 21 that there is little dif-

ference between the rate-independent and rate-dependent mod-

els. Increasing the loading rate however reveals a decreasing rate
f crack growth (see Figs. 22–24 ). Examination of Figs. 23 and

4 at respective loading speeds of 10 m/s and 100 m/s reveals un-

xpected and somewhat unrealistic behaviour with crack initiat-

ng not at the crack tip but at a point inside the specimen and

ubsequently propagating in two directions (see Figs. 25 and 26 ).

his behaviour is as a consequence of the strain rate at elements

n the location of the crack tip being much higher than elsewhere

nd consequently giving rise to a very high critical separation. A

eature of the highest loading rate of 100 m/s, for the separation

ate-dependent CZM is a delay in the initiation of the crack sub-

equently followed by rapid growth (see Fig. 24 ). This behaviour

an be observed in brittle materials such as Polymethyl methacry-

ate; see reference ( Zhou et al., 2005 ) for example. However both

xisting rate models lead to unrealistic crack arrest at high loading

ates and the separation rate-dependent model suffers greatest in

his regard. 

A feature of the new rate model described in Section 5 is a

ounded critical stress which if correctly set should prevent un-

ealistic crack arrest (in this study this value was set to 4 times

he yield stress). Moreover, following the reaching of this upper

ound any further increase in fracture energy is as a consequence

f increases in critical separation. The behaviour of the new rate

odel is outlined schematically in Fig. 27 . Although there is insuf-

cient experimental data in the literature to allow a direct com-

arison there is however evidence for an increase in the fracture

nergy with rate; see for example the experimentally-obtained

urve for G ic from reference ( Marzi et al., 2009 ) and reproduced in

ig. 28 . It is evident that fracture energy does not increase without

ound which is an unrealistic feature of existing models. The upper

imit for fracture energy can be determined experimentally but in

he absence of this data a limit of 2.5 times the rate-independent

racture energy is applied. The results obtained from the simu-

ation of the fracture process for the CT specimen depicted in

ig. 17 with the new model in comparison with existing models

re shown in Figs. 29 and 30 . It is evident from these figures that

he new model provides results close to the results obtained with

he stress rate-dependent model but without a high critical-stress



S. Salih et al. / International Journal of Solids and Structures 90 (2016) 95–115 113 

Fig. 35. The effect of applying a high value for σ limit compared with the value evaluated from W 

�rate 

limit 
. 

Fig. 36. The effect of applying a value for σ limit close to the value evaluated from W 

�rate 

limit 
. 
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alue. The critical stress at the first element in the stress rate-

ependent model reaches 2600 MPa at a 10 m/s loading speed as

hown in Fig. 31 and 30 0 0 MPa at 100 m/s as shown in Fig. 32. Al-

hough these incredibly high values are avoided with use of the

eparation rate-dependent cohesive model other problems occur

s observed in Figs. 25 and 26 . These unrealistic responses ob-

erved in both the stress and separation rate-dependent models

re eliminated by the new model as shown in Fig. 33. The result

f the simulation using the TCZM is different from the BCZM and

rovides further evidence that the type of TSL has an effect (see

igs. 29 and 30 ). Note that the same fracture energy and critical
tress were used in the simulation. f  
For all the rate-dependent models the rate dependency is a

unction of the rate of separation and a constant parameter ( B )

and the parameter B 1 for the new model only) and affects the

trength of rate dependency in the material. In practice, these two

arameters would be determined by curve fitting experimentally-

btained results. Fig. 34 shows the effect of the parameter B on

he crack growth speed for the stress rate-dependent and the new

ate-dependent model for both BCZM and TCZM, since with in-

reasing its value the crack growth speed is decreasing. The value

f the parameter B 1 is observed to have a minor effect on the

rack growth speed for reasonable values of σ limit . Investigations

or B 1 equated to any one of the values {0.126, 0.16 6, 0.20 6, 0.246}
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reveals little effect at loading speeds of 10 m/s and 100 m/s. This

is not too unexpected since increasing the value of σ limit for an

invariant fracture energy has the effect of diminishing the influ-

ence of δrate 
c . A parametric study has been carried out to check the

sensitivity of the model to small changes in material properties,

σ limit and the upper bound on fracture energy, i.e. W 

�rate 

limit 
. A range

of values between 190 to 200 GPa for elastic modulus and 0.29–

0.33 for the Poisson’s ratio has negligible impact on the simulation

results. Although a value for W 

�rate 

limit 
can be obtained experimen-

tally and used to set σ limit , it is of interest to explore the decou-

pling of this relationship. The response obtained for the situation

where σ limit is relatively high compared to the value obtained from

 

�rate 

limit 
is shown in Fig. 35 . In this case the model reduces to the

behaviour observed in a rate-independent cohesive model with σ c 

set by W 

�rate 

limit 
and rate-independent δc applied to all the cohesive

elements. Shown in Fig. 36 however is the behaviour, where σ limit 

is much less than the value obtained from W 

�rate 

limit 
, which is similar

to that observed with the displacement rate-dependent cohesive

model. It is evident that coupling σ limit to W 

�rate 

limit 
provides for a

stable cohesive zone model. 

7. Conclusion 

• The type of TSL can have a measurable effect on the results of

any fracture simulation. 

• The TCZM is able to capture the effects of plasticity local to the

CZ and can be used with an elastic or elastic-plastic bulk ma-

terial. 

• Existing methods employed to account for rate-sensitivity in

fracture processes have been shown to suffer from certain defi-

ciencies including unrepresentative values of critical stress and

separation. 

• To overcome these limitations a new rate-dependent CZM has

been trialled, which connects the rate-dependent fracture en-

ergy to critical stress and separation in a manner that ensures

critical cohesive stress remains bounded and critical separation

attains lower values than with competing methods. 

• The new rate-dependent CZM model has been shown to pro-

vide acceptable results and provides for enhanced stability

when contrasted against competing methodologies. 

• The rate-dependent behaviour of the new model is dependent

on two parameters { B, B }. It was found that an increase in B
1 

Fig. A1. Elastic and fracture ene
decreases crack-growth speed with B 1 having only a minor in-

fluence on crack growth behaviour for typical values of bounds

on critical cohesive stress. 
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ppendix 1. Energy transfers in Model (B-a) 

This section focuses on a particular 1-D model to provide an

llustration of how energy flows can be determined analytically

nder the assumption of small deformation theory. Consider then

odel (B-a) being subjected to an instantaneous strain ε o = δo / l o
o give σo = σe = σD = σcoh and ε o = ε e 

(t) 
+ ε D 

(t) 
+ ε coh , with δo in-

ependent of time and σo = E ε o . The strains ε e 
(t) 

, ε D 
(t) 

, and ɛ coh are

he elastic strain at any time ( ε e 
(t) 

= δe 
(t) 

/ l o ), the strain in the dash-

ot at any time ( ε D 
(t) 

= δD 
(t) 

/ l o ), and the strain in the cohesive zone

 ε coh = δ/ l o ), which is irreversible (does not change for fixed δo ).

he behaviour of this system depends on the relative magnitudes

f σ o and σ c . 

If σ o ≤ σ c , then δe 
(t) 

= δ0 − δD 
(t) 

and ˙ ε o = ˙ ε e + ˙ ε D = E −1 ˙ σ +
−1 σ with ˙ ε e = 

˙ δe / l o and ˙ ε D = 

˙ δD / l o . With ˙ ε o = 0 , stress is ob-

ained on integration of ˙ ε o = E −1 ˙ σ + η−1 σ = 0 to give σ e 
(t) 

=
o exp( −E η−1 t ) from which dashpot displacement can be derived

sing the relationship ˙ ε D = 

˙ δD / l o = σ/η, which integrates to give
D 
(t) 

= δe 
(0) 

( 1 − exp( −E η−1 t ) ) . It is now a relatively simple matter

o determine the energy stored elastically (area A 1 in Fig. A1 )

hich is W 

e 
(t) 

= 0 . 5 σ(t) δ
e 
(t) 

and the energy dissipated by the dash-

ot which is obtained from the change in the work done at the

ashpot ˙ U D = 

˙ W 

D 
d 

, integration of ˙ U D = l o σ D 
(t) 

˙ ε D and divided by the

rea the dissipated energy at the dashpot per unit area is evalu-

ted. 

 

D 
( t ) = 

U D 

A 

= 

∫ t 

0 

ηl o 
(

˙ ε D 
)2 

dt = 

1 

2 

σ e 
( 0 ) δ

e 
( 0 ) 

(
1 −

(
exp 

(−E 

η
t 

))2 
)

(A1)
rgy for an elastic material. 
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d 
( t ) = W 

e 
( t ) + W 

D 
( t ) (A2)

Things are slightly more involved if σ o > σ c as the cohesive

lement must be accounted for and it is assumed to respond in-

tantaneously with δo = δe 
(0) 

+ δ, where δe 
(0) 

is the bulk material re-

ponse and δ arises from the cohesive element. Since stress is com-

on to both the elastic bulk material and the cohesive element the

quality σ e 
(0) 

= σc ( 1 − δ/ δc ) = Eδe 
(0) 

/ l o applies, which solves to give

e 
( 0 ) = 

E δc 

l o 

[ (
1 − δo 

δc 

)(
−1 + 

E δc 

σc l o 

)
] 

(A3) 

hich is applicable for δo ≤ δc as otherwise the element will

ail and the material will separate. With σe 
(0) 

known the subse-

uent behaviour follows with σe 
(t) 

= σe 
(0) 

exp ( −E η−1 t ) and δe 
(t) 

=
e 
(0) 

exp ( −E η−1 t ) along with energies associated with each ele-

ent, i.e. 

 

e 
( t ) = A 1 = 

1 

2 

σ e 
( t ) δ

e 
( t ) (A4) 

 � = A 2 = 

1 

2 

(
σc + σ e 

( 0 ) 

)(
δa − δe 

( 0 ) 

)
+ 

1 

2 

(
σc + σ e 

( 0 ) 

)
( δ0 − δa ) 

= 

1 

2 

(
σc + σ e 

( 0 ) 

)
δ (A5) 

hich provides 

 

d 
( t ) = W 

e 
( t ) + W 

D 
( t ) + W � (A6)

ith W 

D 
(t) 

obtained from Eq. (A1) . 
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