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Abstract:  

 

The Internet of Vehicles (IoV) concept within Intelligent Transportation Systems (ITS) integrates 

automobiles, transportation, information sharing, and traffic infrastructure management to enhance 

road safety. IOV can collaborate to create models through federated learning, improving 

performance, enhancing data privacy, and ensuring the security of local vehicle data. This paper 

introduces a novel Distillation-based Semi supervised (DS-FL) Model for intrusion detection. This 

model was demonstrated using the datasets to address the heterogeneity and diversity of devices and 

malicious samples. Experimental results show that the proposed system achieved 99.48%, 99.75%, 

99.83%, and 99.93% accuracy in detecting various types of attacks on the ISCXIDS2012, CIC-

IDS2017, CSE-CIC-IDS2018, and Car-Hacking datasets, respectively, outperforming other 

intrusion detection techniques. It highlights the model's effectiveness in securing intelligent 

transportation system networks against cyber-attacks.  
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1. INTRODUCTION 

The rapid expansion of the internet of Things (IoT) has enabled novel requests, including smart 

grids, smart cities, and IoV[1]. When consistent vehicles operate over cyberspace, IoT evolves into 
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IoV. Important advancements in smart automobile technology have brought considerable attention 

to IoV technologies, further driving innovation in this field. A vehicle-to-vehicle (V2V) network is 

a combined and open system that attaches vehicles with human intelligence, close atmospheres, and 

community networks. Human error and congestion are reduced by these networks. Despite the IoV's 

many benefits, several issues must be considered to ensure the safety of all thoroughfare users [2].  

The IoV is susceptible to cyberattacks, which can disrupt its constancy and heftiness and result in 

vehicle unavailability and traffic accidents. Multi-component networks require multiple components 

for communication, so they are helpless to various attacks. A comprehensive intrusion detection 

system (IDS) can detect probable cyberattacks and protect the network from various types of 

attacks. A network intrusion detection system identifies differences and spells in data during 

vehicle-to-device communications[3]. The IoV is a moderately new network example, so it faces 

continuously budding attacks. The IoV network generates data rapidly, especially during 

cyberattacks. In this high-stakes environment, appliance learning and deep learning approaches are 

favorite [4], [5].  

 

Figure 1: The communications model for the Internet of vehicles 

As the IoV moves toward a fully connected era, road accidents are expected to be reduced, overall 

transport safety will improve, transportation comfort will be enhanced, traffic congestion will be 

relieved, and environmental impact will be significantly reduced. Bright vehicles in the IoV are 

expected to be prepared with over 100 multisensory to facilitate efficient communications [6], [7]. 

[6], [8] such as V2V, Vehicle-to-Substructure (V2I), etc. are presented in Figure 1. 5G mobile 

networks promise advanced features to enhance effective communication in IoV environments that 

are characterized by high mobility. 

A cooperative machine learning paradigm that prioritizes data privacy and integrity has gained 

significant significance in recent years: Federated Learning (FL) [9], [10]. In FL, system training is 

devolved across multiple lumps or customers using their local data. These parameters are 

exchanged and aggregated to create an individual global model, complete a dominant server or via a 

peer-to-line [11], [12]. Each client creates an aggregate of all individual models following several 

iterations. 

Deep learning is collaborative and privacy-protected with federated learning, with energy 

preservation as an additional benefit. Using federated learning to analyze driver behaviour to save 

training time and maintain data privacy is novel. The capacity and distribution of several data 

sources are available. An integrated federated learning model was developed and implemented to 

handle heterogeneous datasets, regardless of whether they are Independent and Identically 

Distributed (IID). Four system spell uncovering datasets were assessed: the ISC-XIDS2012, CSE-
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CICIDS2018, and CIC-110 IDS2017, Car Hacking dataset. A comparison of our attack detection 

method with other FL-based attack detection methods is conducted to determine its effectiveness. 

In the remainder of the paper, the sections are organized as follows. The literature is discussed in 

section 2. Section 3 presents the proposed methodology. A discussion of the results is presented in 

Section 4, and the paper concludes in Section 5. 

2. LITERATURE REVIEW 

Several works have applied FL to IoT security in recent years, with FL gaining importance in 

cybersecurity. Data privacy problems are evident from the study [13], but the study evaluated 

private data. It is unlikely that the data will be distributed randomly among clients in realistic 

scenarios where each client's data will come from a different distribution. In contrast with the 

previous studies, which focused on network data, the studies in [8] and [9] focused specifically on 

IoT device applications and sensor understandings [8] and [9]. Author [16] examined FL using 

intrusion detection systems as a case study. Additionally, blockchain technology is used to mitigate 

adversarial FL issues. Despite not specifically targeting IoT devices, it focuses on early stages of 

intrusion detection rather than existing malware detection[17]. 

Previously, the author developed a C-ITS application server protection system against position 

falsification attacks using V2N in our previous work [18]. In order to improve discovery results, 

historical position data is used. A FL and blockchain-based miss behaviour recognition system for 

VANETs was projected in [19]. An RSU can send a shared exercise model to a vehicle, which can 

then update the parameters without sharing local data with the RSU. On the blockchain, models are 

aggregated based on their accuracy scores and stored as an averaged model. According to [20], An 

extended version of VeReMi was created. Among the 19 attack types included in this expansion are 

sophisticated attacks like Information Replay, DoS, and Sybil at various vehicle thicknesses. A 

basic misbehaviour detection mechanism based on LSTMs and DNNs is also used in this study. 

Further research is based on these results. Researchers can leverage this large dataset to compare 

and enhance their detection mechanisms and develop new ones.  

Machine learning (ML) is an essential component of many AI applications [21]. An ML approach 

includes RL, SL, and unsupervised learning. The unsupervised machine learning scheme requires 

untagged data for training. To represent untagged data, it searches for a suitable method. Supervised 

learning is the other handling based on a set of labelled data. Discrete and continuous data are 

trained with regression and classification algorithms in supervised learning. Reinforcement learning 

(RL) studies behaviour from the perspective of constant rewards to take advantage of cumulative 

rewards. Reinforcement learning is achieved through Markov Decision Processes (MDPs) [14]. 

Numerous automotive network research problems can be addressed using this plan, such as 

optimum route prediction for electric vehicles, cooperative optimization of oil consumption within a 

region, and traffic jam reduction. Several IoV-related contexts are discussed in it [22].  

IDSs based on ML may encounter issues that FL can address. An FL approach can enable manifold 

applicants to develop vigorous and efficient ML copies without sharing data [23]. Federated 

Learning (FL) is among the most adaptable techniques for training machine learning (ML) 

algorithms on edge devices. In contrast to other approaches that do not use FL, this strategy 

preserves user privacy [24]. Algorithms based on FL have several advantages. Using FL, predictive 

models can be learned, and the training dataset can be maintained instead of centralized [25]. It 

reduces time consumption and allows access to data without contacting a centralized server. 

Moreover, its low complexity and distributed architecture make it particularly suitable for 

deployment on resource-constrained hardware [25].  

3. PROPOSED FEDERATED LEARNING-BASED MODEL 
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In response to these concerns, Federated Learning has taken steps to address them (FL) [9], [26], 

[27]. A centralized server coordinates the sharing of machine learning models in FL instead of 

sharing data instances. The coordinator builds a global model that protects confidential information 

by aggregating local models from each device. Data that contains sensitive information should 

never be disclosed. While FL offers several benefits over centralized learning, it faces several 

performance challenges [27]. The limited amount of data generated by each device often leads to 

performance degradation, which reduces the effectiveness of the device as a whole. 

Furthermore, FL devices typically encounter different data types, leading to class imbalances and 

further affecting performance. When heterogeneous devices participate, performance issues may 

arise due to observations of different events. A global aggregation server uses edge devices (ED) to 

produce a learning model [28]. Figure 2 illustrates FL for IoV networks. 

 

Figure 2: FL model for Vehicular IoV devices. 

A. Federated learning Implementation 

PyTorch, a research-driven platform, enables using PySyft, an FL-specific framework [29]. Deep 

learning is made secure and private using PySyft, a Python-based FL implementation. The private 

data is separated from the model training process by integrating FL and PyTorch machine learning. 

This setup uses PyTorch as a traditional centralized implementation, while PySyft virtual workers 

provide a local simulation aggregated at each epoch. The first step is to request a profile from the 

IoT security service. This simulation will use only the dataset to train the model for testing. In order 

to train and test virtual workers, we need to create them first. Virtual workers are assigned a 

location ID before training begins, which assigns the optimizer to their location. The virtual workers 

have been created, and the dataset has been batched and sent to the working hardware device, or in 

this case, the simulation of the virtual workers. The security gateway would handle port mirroring to 

avoid interrupting the signal to the IoT device by using data mirrored over the network-specified 

port. A virtual worker's benign data is batched evenly during training in the simulation. 

The virtual workers begin processing their respective batches of training data once the training data 

is batch-sending to them. Every worker signals the end of an epoch after completing their tasks. 

After completing each epoch, a zero gradient is used to clear the optimized gradients. IoT global 

models are then aggregated from the local models. After the global model has been aggregated, it is 
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sent back to the security gateways for the specific type of device to continue the training process. 

During training, the output loss obtained from the new global model is aggregated from the local 

models after each epoch. 

 

B. Distillation-based Semisupervised (DS-FL) Model 

The DS-FL model consists of six steps, where each client holds a labelled private dataset Dk and an 

unlabeled dataset Do=xjo|j=1,2,…,No. Here xjo represents the vectorized feature of a sample, and  

No, represent the number of samples in the open dataset. For simplicity, we use a matrix Xoto 

denote the concatenated vectorized samples of Do. 

As shown in Eqn. 1, each client trains its deep learning model with a privately labeled dataset in the 

first communication round. During the second step, clients K generate predictions for the unlabeled 

samples, i.e., local logits: 

�̂�𝑗
𝑘 = 𝐹(𝒙𝑗

𝑜|𝒘𝑘)                                     (5) 

Here, use the matrix �̂�𝑘 to represent the concatenated �̂�𝑗
𝑘| = 𝑗 = 1,2, … , 𝑁𝑜 of the DL model. A 

central server then uploads the local logs from each client. Based on these local logits, the server 

aggregates the global logits �̂�𝑗
𝑠 as follows: 

�̂�𝑗
𝑠 =

1

𝐾
∑ �̂�𝑗

𝑘

𝐾

𝑘=1

                                              (6) 

�̂�𝑗
𝑠 ← 𝑆(�̂�𝑗

𝑠|𝑇)                                               (7) 

where 𝑆(· |𝑇) is the softmax function with the 𝑇 temperature, i.e., 

𝑆(�̂�𝑗
𝑠|𝑇) =

𝑒𝑥𝑝 (
�̂�𝑗

𝑠

𝑇 )

∑ 𝑒𝑥𝑝 (
�̂�𝑗

𝑠

𝑇 )𝐿−1
𝑙=0

                        (8) 

When T is less than 1, the distribution of pj becomes sharper, reducing the information entropy. DS-

FL can be accelerated and stabilized in non-IID data distributions by reducing the entropy of global 

logits [30]. The matrix Ps, which represent the concatenated pjs|=i=1,2,…,No, is then broadcast to 

each client. Finally, each client trains its DL model with the global logits through the process, called 

distillation, as follows: 

𝒘𝑙 ← 𝒘𝑘 − 𝛾∇𝜓(�̂�𝑘, �̂�𝑠)                                                  (9) 

In addition, the server maintain global model ws and trains it using the shared unlabeled dataset 

along with the global logits as follows: 

𝒘𝑠 ← 𝒘𝑠 − 𝛾∇𝜓(𝐹(𝑿𝑜|𝒘𝑠), �̂�𝑠)                                     (10) 

These procedures iterate over multiple communication rounds. Each DS-FL client must train its 

local model using a private dataset. However, when the trained model predicts on an open dataset, if 

the distribution of the private dataset is non-IID, the distribution of samples in the open dataset can 

differ significantly. This mismatch can lead to incorrect predictions by the trained model, reducing 

the number of local logits generated. 
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4. EXPERIMENTAL RESULTS 

Results from several experiments were collected to validate this framework. The initial section of 

the paper evaluates the performance of supervised and unsupervised methods in detecting malware. 

 

 

A.  Datasets and Pre-Processing  

The V2X networks involve communications between the vehicle and other external entities. In-

vehicle networks fall under the second category. The datasets used are listed below: 

1. ISCXIDS2012 [31]: A heavily skewed class distribution is observed in the dataset, with binary 

labels "normal" and "attack." 

2. CIC-IDS2017 [32]: It includes the HTTPS protocol, which accounts for nearly 70% of network 

traffic, to improve ISCXIDS2012. In contrast to ISCXIDS2012, this improved dataset has a 

better distribution of classes and is a multi-class dataset. 

3. CSE-CIC-IDS2018 [33]: A category named "Benign" appears in CIC-IDS2017 and CSE-CIC-

IDS2018, while the remaining fourteen categories are labelled as attacks. 

4. Car-Hacking [34]: Using the vehicle's OBD-II port, malicious traffic is injected into a genuine 

network in-vehicle, and this dataset pertains to in-vehicle networks. This dataset has four 

categories of attacks: DOS attacks, fuzzy attacks, spoofing attacks on drive gears, and RPM 

gauges. 

Based on Table 1, the distribution of classes between the datasets is uneven, with 99.20% of 

samples classified as "normal" and only 2.8% as attack. Similar to CIC-IDS2017, 80.30% of CSE-

CIC-IDS2018 samples were classified as "normal," according to CSE-CIC-IDS2018. A total of six 

categories are used in CIC-IDS2017, and five categories are used in CSE-CIC-IDS2018; 86.6% of 

samples in the Car Hacking dataset are classified as "normal." In contrast, the remaining samples 

are distributed among four types of attacks. 

Table 1: IOV cyber-attacks described 

Dataset No. of Instances Attack Class Label Type 

ISCXIDS2012 2,450,324 2.8% Binary 

CIC-IDS2017 2,830,743 19.7% Multi-class 

CSE-CIC-IDS2018 19,233,002 17.0% Multi-class 

CAR-HACKING 17,357,681 13.4% Multi-class 
 

Hierarchical classification is used in the proposed work, which involves two classification stages. 

As a first stage, a binary classification determines whether the instance is a "normal" or an "attack". 

A hierarchical multi-class classification frames the problem in the second stage is classified as an 

"attack.". Except for the ISCXIDS2012 dataset, which consists only of binary labels and thus only 

requires the first stage of this process, the labels must be processed in the two stages. 

In order to improve network performance, the data range is converted into a fixed scale by 

normalizing or scaling it. Deep learning requires a matrix format for training data, similar to an 

image, and normalizing input data using the following equation: 

𝑑′ =
𝑑 − min (𝑑)

max(𝑑) − min (𝑑)
 

4.1 Oversampling 
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Oversampling and undersampling were used to resolve imbalances. It is possible to optimize both 

detection performance and delay with SMOTE filter [35], [36], [37]. Other approach involves 

linearly combining two comparable minority samples to generate additional data points. By 

interpolating between a minority sample and its neighbors, new feature values can be calculated. 

 

 

4.2 Feature Selection 

Feature selection systems identify relevant features related to target concepts. Feature extraction and 

selection enhance and decrease computational complexity learning performance, decrease storage 

requirements and build more generalizable models. As opposed to feature extraction, feature 

selection retains and enhances the physical meanings of features by preserving them without 

transforming them. 

Proposed techniques are used in this paper to enhance the reliability and efficiency of the system by 

selecting prominent features, computing them individually, and averaging the results. Traditional 

feature selection methods like the Gini coefficient, information gain and entropy are also utilized to 

assess feature rank through variations in tree-based technique parameters. Features are ranked by 

reputation, with high-importance features added first until their cumulative importance ranges from 

0.9. A computation-intensive feature is excluded if its importance sum is less than 0.1. 

B. Performance Metrics 

This paper employs three presentation metrics to assess the feature engineering process, prediction 

accuracy, and sensible presentation. The next quantities were used to evaluate and compare forecast 

models quantitatively: 

The evaluation includes four potential organizations for a sample dataset that classifies usual and 

spells together. These classifications are True Positives, False Negatives, False Positives, and True 

Negatives, as illustrated in Table 2. A classification is deemed correct if it is True and incorrect if it 

is False. Positive classification Positive samples are indicated by this indicator (classifier identifying 

confident samples), while negative organization denotes the presence of negative samples (classifier 

identifying Sampling negatives). 

1. Right Confident: Correctly detects a usual instance. 

2. False Positive: Incorrectly classifies an abnormal instance as normal. 

3. An instance classified as abnormal is incorrectly classified as being False Negative. 

4. Correctly identifies abnormal instances as true negatives. 

Table 2: Detection results 

 Relevant Not relevant 

Detected True positives (TP) False positives (FP) 

Not Detected False Negative (FN) True negatives (TN) 

 

Accuracy (Acc): It can be calculated as the percentage of instances properly classified as either 

normal or attacks using the following formula: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                 (1) 

Precision 𝑷: A relevant instance can be defined by a percentage among the detected instances. The 

formula for calculating this is as follows: 



 

8  |  INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY       www.multijournals.org 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                             (2) 

Recollection 𝑹: Based on the formula below, this figure represents the percentage of relevant 

instances that have been detected compared to the total amount of relevant instances: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                           (3) 

F1-Score: In order to calculate the F1-Score, consider the following formula: 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
(∝2+ 1)𝑃 ∗ 𝑅

∝2 (𝑃 + 𝑅)
                                                       (4) 

More specifically, where ∝= 1,  the new formula of  𝐹1Score  is 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
                                                                     (5) 

C. Results Discussion 

The proposed algorithm is simulated, and its performance is evaluated using a desktop computer 

with the following specifications: an Intel® Core™ i7 @ 2.50GHz processor and 16 GB of RAM. 

An NVIDIA Federated Learning (FL) was trained with GeForce RTX 3080 Ti 16GB graphics 

cards. Implemented with Keras and Tensor Flow back ends in a Python-based environment, the 

scheme was simulated in a Python-based environment. 

Figure 3 illustrates the results of evaluating the DS-FL model on the CIC-IDS2017, ISCXIDS2012, 

Car-Hacking, and CSE-CIC-IDS2018 datasets. Among these datasets, the DS-FL model 

demonstrates superior performance on the Car-Hacking dataset. Specifically, features G, B, F, and 

H achieved the highest accuracies: 99.4777%, 99.7491%, 99.8244%, and 99.9260%, respectively, 

using the DS-FL model on ISCXIDS2012, Car-Hacking, CSE-CIC-IDS2018, and CIC-IDS2017 

datasets. The DS-FL model shows significantly improved results, particularly on the Car-Hacking 

dataset. For evaluation purposes, 10 features were randomly selected. 
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Figure 3: Avg. performance (%) analysis versus Feature ID. 

Figure 4 illustrates the accuracy progression as the number of features varies for the ISCXIDS2012, 

Car-Hacking, CSE-CIC-IDS2018, and CIC-IDS2017 datasets using the DS-FL model proposed in 

this study. The results demonstrate that the DS-FL model excels, particularly with the Car-Hacking 

dataset across different feature sets. 

For the CIC-IDS2017, CSE-CIC-IDS2018, and Car-Hacking datasets, the DS-FL model achieves a 

remarkable 99% accuracy. The figure also shows that achieving 100% precision requires 

approximately 69 features for CIC-IDS2017, 59 for ISCXIDS2012, 50 for Car-Hacking, and 39 for 

CSE-CIC-IDS2018 datasets. Furthermore, the analysis reveals that around 50 features are adequate 

to achieve 100% recall and F1-Score for detecting attacks across all datasets. 
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Figure 4: Accuracy, precision, recall and F1-Score (%) versus number of features. 

To legalize the performance of the future scheme, we compared its Graphics cards equipped with 

GeForce RTX 3080 Ti 16GB, which were used for teaching at Federated Learning (FL). [34], 

LSTM neural-network-based model [38], deep learning-based IDS [39], FED-IDS [40], and A 

framework for detecting attacks on vehicular sensor networks (VSNs) based on FL [41]. Our 

proposed model demonstrated superior performance, particularly on the Car Hacking dataset, 

achieving higher accuracy than the methods listed in Table 3. 

Table 3: Compared accuracy (%)to existing algorithms. 

Author & Year Dataset Accuracy (%) 

GIDS [34] CAN Intrusion 98.0 

LSTM-NN[38] CAN bus 99.11 

Deep Learning-based IDS [39] Car Hacking, UNSW-NB15 99.0 

FED-IDS [40] Car-Hacking, TON_IoT 97.82 

FL-VSN[41] Car Hacking 99.52 

Proposed Model 

ISCXIDS2012 99.48 

CIC-IDS2017 99.75 

CSE-CIC-IDS2018 99.83 

Car-Hacking 99.93 
 

5. CONCLUSION 

Various cyber-attacks can be carried out against the Internet of Vehicles (IoV) due to their 

widespread presence and insufficient security measures. Several types of attacks can be prevented 

with the use of Intrusion Detection Systems (IDSs). A distillation-based semi-supervised (DS-FL) 

model is used in this study to detect abnormal events in IoV networks and learn the behaviour of 

normal network traffic. The proposed method leverages statistical features of network behaviour to 

create a robust learning model of normal traffic flow in IoVs. Evaluation results indicate that As far 

as accuracy, precision, recall, and F1 scores are concerned, the proposed model performs 
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exceptionally well. The overall normal exactness of the proposed IDS model is 99.48%, 99.75%, 

99.83%, and 99.93% for the ISCXIDS2012, Car-Hacking, CSE-CIC-IDS2018, and CIC-IDS2017 

datasets, respectively. 
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