On Neutrosophic Crisp Generalized Alpha Generalized Closed Sets

Murtadha M. Abdulkadhim ${ }^{1}$, Qays H. Imran ${ }^{2 *}$, Ali H. M. Al-Obaidi ${ }^{3}$, Said Broumi ${ }^{4}$
${ }^{1}$ Department of Science, College of Basic Education, Al-Muthanna University, Samawah, Iraq
${ }^{2}$ Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq
${ }^{3}$ Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq
${ }^{4}$ Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Morocco Emails: murtadha_moh@mu.edu.iq; qays.imran@mu.edu.iq; aalobaidi@uobabylon.edu.iq; broumisaid78@gmail.com
*Correspondence: qays.imran@mu.edu.iq

Abstract

This study reveals new concepts of neutrosophic crisp closed sets named neutrosophic crisp g-closed sets, neutrosophic crisp αg-closed sets, neutrosophic crisp $g \alpha$-closed sets, and neutrosophic crisp $g \alpha g$-closed sets. Furthermore, their ultimate features in neutrosophic crisp topological spaces are examined. Moreover, the consequent new concepts are introduced, such as neutrosophic crisp $g \alpha g$-closure and neutrosophic crisp $g \alpha g$ interior, and finding some of their characteristics.

Mathematics Subject Classification (2010): 54A05, 54B05.
Keywords: $\mathrm{Ne} u^{C g \alpha g} \mathrm{CS}$; $\mathrm{Ne} u^{C g \alpha g}$ OS; $N e u^{C g \alpha g}$-closure and $N e u^{C g \alpha g}$-interior.

1. Introduction

Salama et al. [1] presented the idea of neutrosophic crisp topological space (or simply Neu ${ }^{C T S}$). Salama [2] give some concepts of neutrosophic crisp nearly open sets. Al-Hamido et al. [3] provided the interpretation of neutrosophic crisp semi- α-closed sets. Al-Obaidi et al. [4,5] provided new concepts of weakly neutrosophic crisp open functions and weakly neutrosophic crisp closed functions. PAGE et al. [6] presented the view of neutrosophic generalized homeomorphism. Imran et al. [7-9] provided neutrosophic generalized alpha generalized continuity, different kinds of weakly neutrosophic crisp continuity, and other concepts of neutrosophic crisp open sets. This paper aims to establish the notion of neutrosophic crisp $g \alpha g$-closed sets and survey their vital elements in neutrosophic crisp topological space. Furthermore, we identify neutrosophic crisp $g \alpha g$-closure and neutrosophic crisp $g \alpha g$-interior and achieve several of their highlights.

2. Preliminaries

All through this work, (\mathfrak{U}, ψ) (or simply \mathfrak{U}) frequently implies $N e u^{C T S}$. For a neutrosophic crisp set \mathfrak{D} in a $N e u^{C T S}(\mathfrak{U}, \psi)$, we symbolize the neutrosophic crisp closure of \mathfrak{D} by $\operatorname{Neu} u^{C} \operatorname{cl}(\mathfrak{D})$, the neutrosophic crisp interior of \mathfrak{D} by $\operatorname{Neu}^{C} \operatorname{int}(\mathfrak{D})$, and the neutrosophic crisp complement of \mathfrak{D} by $\mathfrak{D}=\mathfrak{U}_{\text {Neu }}-\mathfrak{D}$, respectively.
Definition 2.1: [1]
Presume that non-empty certain fixed space \mathfrak{U} has mutually exclusive subsets $\mathfrak{D}_{1}, \mathfrak{D}_{2} \& \mathfrak{D}_{3}$. A neutrosophic crisp set (or simply Neu ${ }^{C} \mathrm{~S}$) \mathfrak{D} with form $\mathfrak{D}=\left\langle\mathfrak{D}_{1}, \quad \mathfrak{D} 2, \mathfrak{D}_{3}\right\rangle$ is called an object.

Definition 2.2: [1]
A neutrosophic crisp topology (in rapid, $N e u^{C T}$) on $\mathfrak{U} \neq \phi$ is a collection ψ of $N e u^{C}$ Ss in \mathfrak{U} comforting the rules given below:
(i) $\phi_{\text {Neu }}, \mathfrak{U}_{\text {Neu }} \in \psi$,
(ii) $\mathfrak{D}_{1} \sqcap \mathfrak{D}_{2} \in \psi$ being $\mathfrak{D}_{1}, \mathfrak{D}_{2} \in \psi$,
(iii) $\sqcup \mathfrak{D}_{k} \in \psi$ for arbitrary family $\left\{\mathfrak{D}_{k} \mid k \in \Delta\right\} \subseteq \psi$.

In this situation the ordered pair (\mathfrak{U}, ψ) is termed as $N e u^{C T S}$ and each $N e u^{C} S$ in ψ is named as a neutrosophic crisp open set (in short, $N e u^{C}$ OS). The complement \mathfrak{D} of a $N e u^{C}$ OS \mathfrak{D} in \mathfrak{U} is recognized as neutrosophic crisp closed set (briefly, $N e u^{C} \mathrm{CS}$) in \mathfrak{U}.

Definition 2.3: [2]
A neutrosophic crisp subset \mathfrak{D} of a $\operatorname{Neu}{ }^{C T S}(\mathfrak{U}, \psi)$ is stated to be a neutrosophic crisp α-open set (in brief $N e u^{C \alpha} O S$) if $\mathfrak{D} \sqsubseteq \mathrm{Neu}^{C} \operatorname{int}\left(\mathrm{Neu}^{C} \operatorname{cl}\left(\mathrm{Neu}^{C} \operatorname{int}(\mathfrak{D})\right)\right.$) and a neutrosophic crisp α-closed set (in short $N e u^{C \alpha} \mathrm{CS}$) if $\operatorname{Neu}^{C} \operatorname{cl}\left(\operatorname{Neu}^{C} \operatorname{int}\left(\operatorname{Neu}^{C} \operatorname{cl}(\mathfrak{D})\right)\right) \subseteq \mathfrak{D}$. The neutrosophic crisp α-closure of \mathfrak{D} of a $\operatorname{Neu}^{C T S}(\mathfrak{U}, \psi)$ is the overlapping of the whole $\mathrm{Neu}{ }^{\mathrm{C} \mathrm{\alpha}} \mathrm{CSs}$ that include \mathfrak{D} and it is symbolized by $\mathrm{Neu}^{C \alpha} \mathrm{Cl}(\mathfrak{D})$.

Proposition 2.4: [2,10]
Every $N e u^{C}$ OS (resp. $N e u^{C} \mathrm{CS}$) is a $N e u^{C \alpha}$ OS (resp. $N e u^{C \alpha} \mathrm{CS}$).

3. Neutrosophic Crisp Generalized $\boldsymbol{\alpha} \boldsymbol{g}$-Closed Sets

In this part, we characterize and analyze the neutrosophic crisp generalized $\boldsymbol{\alpha} \boldsymbol{g}$-closed sets and several of their features.

Definition 3.1:

Let \mathfrak{D} be a neutrosophic crisp subset, and let \mathfrak{M} be a $N e u^{C} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ where $\mathfrak{D} \subseteq \mathfrak{M}$ then \mathfrak{D} is called:
(i) a neutrosophic crisp generalized closed set (in a word, $N e u^{C g} \mathrm{CS}$) if $\mathrm{Neu}{ }^{C} c l(\mathfrak{D}) \subseteq \mathfrak{M}$ and the complement of a $N e u^{C g} \mathrm{CS}$ is a $N e u^{C g} \operatorname{OS}$ in (\mathfrak{U}, ψ).
(ii) a neutrosophic crisp αg-closed set (in a word, $N e u^{C \alpha g} \mathrm{CS}$) if $N e u^{C \alpha} c l(\mathfrak{D}) \subseteq \mathfrak{M}$ and the complement of a $N e u^{C \alpha g} \mathrm{CS}$ is a $N e u^{C \alpha g} \operatorname{OS}$ in (\mathfrak{U}, ψ).
(iii) a neutrosophic crisp $g \alpha$-closed set (in a word, $N e u^{C g \alpha} \mathrm{CS}$) if $N e u^{C \alpha} c l(\mathfrak{D}) \sqsubseteq \mathfrak{M}$ and the complement of a $N e u^{C g \alpha} \operatorname{CS}$ is a $N e u^{C g \alpha} \operatorname{OS}$ in (\mathfrak{U}, ψ).

Theorem 3.2:

In a $N e u^{C T S}(\mathfrak{U}, \psi)$, the subsequent arguments are valid:
(i) Each $\mathrm{Neu}^{C} \mathrm{CS}$ is a $N e u^{C g} \mathrm{CS}$.
(ii) Each $N e u^{C g}$ CS is a $N e u^{C \alpha g} \mathrm{CS}$.
(iii) Each $N e u^{C \alpha} \mathrm{CS}$ is a $N e u^{C g \alpha} \mathrm{CS}$.
(iv) Each $N e u^{C g \alpha} \mathrm{CS}$ is a $N e u^{C \alpha g} \mathrm{CS}$.

Proof:

(i) Let $\mathfrak{D} \sqsubseteq \mathfrak{R}$ and \mathfrak{R} be a $N e u^{C} O S$ in $N e u^{C T S}(\mathfrak{U}, \psi)$. Since \mathfrak{D} is a $N e u^{C} \operatorname{CS}, N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{D}$. That is $N e u^{C} c l(\mathfrak{D}) \sqsubseteq$ $\mathfrak{D} \sqsubseteq \mathfrak{R}$. Hence \mathfrak{D} is a $N e u^{C g} \mathrm{CS}$.
(ii) Let \mathfrak{D} be a $N e u^{C g} C S$. Then $N e u^{C} c l(\mathfrak{D}) \subseteq \mathfrak{R}$ whenever $\mathfrak{D} \sqsubseteq \mathfrak{R}$ and \mathfrak{R} is a $N e u^{C} O S$ in $N e u^{C T S}(\mathfrak{U}, \psi)$. But every $N e u^{C} O S$ is a $N e u^{C \alpha} O S$, which implies \mathfrak{R} is a $N e u^{C \alpha} O S$. Also $N e u^{C \alpha} \operatorname{cl}(\mathfrak{D}) \sqsubseteq N e u^{C} c l(\mathfrak{D}) \sqsubseteq \Re$. Hence \mathfrak{D} is a $\mathrm{Neu}^{\mathrm{Cag}} \mathrm{CS}$.
(iii) Let \mathfrak{D} be a $\boldsymbol{N e u} \boldsymbol{u}^{\boldsymbol{C \alpha}} \mathbf{C S}$ and let $\mathfrak{D} \sqsubseteq \mathfrak{R}$ where \boldsymbol{R} is a $\boldsymbol{N e u ^ { C \alpha }} \mathbf{O S}$ in $\boldsymbol{N e u} \boldsymbol{u}^{\boldsymbol{C T S}}(\boldsymbol{U}, \boldsymbol{\psi})$. Since \mathfrak{D} is a $\boldsymbol{N e u} \boldsymbol{u}^{\boldsymbol{C \alpha}} \mathbf{C S}$, then $\boldsymbol{N e u} \boldsymbol{u}^{C} \boldsymbol{c l}\left(\mathbf{N e u}^{C} \boldsymbol{i n t}\left(\mathbf{N e u}^{\boldsymbol{C}} \boldsymbol{c l}(\mathfrak{D})\right) \subseteq \subseteq \mathfrak{D} \sqsubseteq \Re\right.$, since $\boldsymbol{N e u}{ }^{\boldsymbol{C \alpha}} \boldsymbol{c l}(\mathfrak{D})$ is the smallest $\boldsymbol{N e u}^{\boldsymbol{C \alpha}} \mathbf{C S}$ containing \mathfrak{D}, so,

(iv) Let $\mathfrak{D} \sqsubseteq \mathfrak{R}$ and \boldsymbol{R} is a $\boldsymbol{N e u} \boldsymbol{u}^{\boldsymbol{C}} \mathbf{O S}$ in $\boldsymbol{N e u}{ }^{\boldsymbol{C T S}}(\mathfrak{U}, \boldsymbol{\psi})$. Then $\boldsymbol{N e u} \boldsymbol{u}^{\boldsymbol{C \alpha}} \boldsymbol{c l}(\mathfrak{D}) \sqsubseteq \boldsymbol{R}$ as \mathfrak{D} is a $\boldsymbol{N e u}{ }^{\boldsymbol{C g \alpha}} \mathbf{C S}$. Since every

As shown in the next examples, the opposite of the beyond theorem is not valid.

Example 3.3:

Let $\mathfrak{U}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ and let $\psi=\left\{\phi_{\text {Neu }},\left\langle\left\{r_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{3}, r_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{1}, r_{3}, r_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{\text {Neu }}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}.
Then the $N e u^{C} \mathrm{~S}\left\langle\left\{r_{1}, r_{2}, r_{3}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C g} \mathrm{CS}$ but not $N e u^{C} \mathrm{CS}$.

Example 3.4:

Let $\mathfrak{U}=\left\{r_{1}, r_{2}, r_{3}\right\}$ and let $\psi=\left\{\phi_{N e u},\left\langle\left\{r_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{3}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{1}, r_{3}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{N e u}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $N e u^{C} \mathrm{~S}\left\langle\left\{r_{3}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C \alpha g} \mathrm{CS}$ but not $N e u^{C g} \mathrm{CS}$.

Example 3.5:

Let $\mathfrak{U}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and let $\psi=\left\{\phi_{N e u},\left\langle\left\{s_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{2}, s_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{1}, s_{2}, s_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{N e u}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $N e u^{C} \mathrm{~S}\left\langle\left\{s_{2}, s_{3}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C g \alpha} \mathrm{CS}$ but not $N e u^{C \alpha} \mathrm{CS}$.

Example 3.6:

Let $\mathfrak{U}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ and let $\psi=\left\{\phi_{\text {Neu }},\left\langle\left\{r_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{2}, r_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{1}, r_{2}, r_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{N e u}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $N e u^{C} \mathrm{~S}\left\langle\left\{r_{1}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C \alpha g} \mathrm{CS}$ but not $N e u^{C g \alpha} \mathrm{CS}$.

Theorem 3.7:

In a $N e u^{C T S}(\mathfrak{U}, \psi)$, the subsequent arguments are valid:
(i) Each $\mathrm{Neu}{ }^{C} \mathrm{OS}$ is a $N e u^{C g}$ OS.
(ii) Each $N e u^{C g}$ OS is a $N e u^{C \alpha g}$ OS.
(iii) Each $N e u^{C \alpha}$ OS is a $N e u^{C g \alpha}$ OS.
(iv) Each $\mathrm{Neu}{ }^{\mathrm{Cg} \mathrm{\alpha}}$ OS is a $\mathrm{Neu}^{\mathrm{C} \mathrm{\alpha g}}$ OS.

Proof:

(i), (ii), (iii) and (iv) are understandable.

Definition 3.8:

Let \mathfrak{D} be a neutrosophic crisp subset, and \mathfrak{M} be a $N e u^{C \alpha g} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ where $\mathfrak{D} \sqsubseteq \mathfrak{M}$, then \mathfrak{D} is titled a neutrosophic crisp generalized αg-closed set (in brief, $N e u^{C g \alpha g} \mathrm{CS}$) if $N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{M}$ and the family of the whole $N e u^{C g \alpha g} \mathrm{CSs}$ of a $N e u^{C T S}(\mathfrak{U}, \psi)$ is symbolized by $N e u^{C g \alpha g} C(\mathfrak{U})$.

Theorem 3.9:

In a $N e u^{C T S}(\mathfrak{U}, \psi)$, the subsequent arguments are valid:
(i) Each $\mathrm{Neu}^{C} \mathrm{CS}$ is a $\mathrm{Neu}^{\mathrm{Cg} \mathrm{\alpha g}} \mathrm{CS}$.
(ii) Each $\mathrm{Neu}{ }^{\mathrm{Cg} \alpha g} \mathrm{CS}$ is a $\mathrm{Neu}^{\mathrm{Cg}} \mathrm{CS}$.
(iii) Each $\mathrm{Neu}^{\mathrm{Cg} \mathrm{\alpha g}} \mathrm{CS}$ is a $N e u^{\mathrm{C} \mathrm{\alpha g}} \mathrm{CS}$.
(iv) Each $\mathrm{Neu}^{\mathrm{Cg} \mathrm{\alpha g}} \mathrm{CS}$ is a $\mathrm{Neu}^{C g \alpha} \mathrm{CS}$.

Proof:
(i) Let \mathfrak{D} be a $N e u^{C} \mathrm{CS}$ and \mathfrak{M} be any $N e u^{C \alpha g} \operatorname{OS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ including \mathfrak{D}. Then $N e u^{C} c l(\mathfrak{D})=\mathfrak{D} \sqsubseteq \mathfrak{M}$. Therefore, \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$.
(ii) Let \mathfrak{D} be a $N e u^{C g \alpha g} C S$ and \mathfrak{M} be any $N e u^{C} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ including \mathfrak{D}. According to theorem (3.7), \mathfrak{M} is a $N e u^{C \alpha g}$ OS in (\mathfrak{U}, ψ). Because \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$, we get $N e u^{C} \operatorname{Cl}(\mathfrak{D}) \subseteq \mathfrak{M}$. Therefore, \mathfrak{D} is a $N e u^{C g} \mathrm{CS}$.
(iii) Let \mathfrak{D} be a $N e u^{C g \alpha g} \operatorname{CS}$ and \mathfrak{M} be any $N e u^{C} \operatorname{OS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ including \mathfrak{D}. According to theorem (3.7), \mathfrak{M} is a $N e u^{C \alpha g}$ OS in (\mathfrak{U}, ψ). Because \mathfrak{D} is a $N e u^{C g \alpha g} \operatorname{CS}$, we get $N e u^{C \alpha} c l(\mathfrak{D}) \sqsubseteq N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{M}$. Therefore, \mathfrak{D} is a $N e u^{C \alpha g} \mathrm{CS}$.
(iv) Let \mathfrak{D} be a $N e u^{C g \alpha g} C S$ and \mathfrak{M} be any $N e u^{C \alpha} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ including \mathfrak{D}. According to theorem (3.7), \mathfrak{M} is a $N e u^{C \alpha g}$ OS in (\mathfrak{U}, ψ). Because \mathfrak{D} is a $N e u^{C g \alpha g} \operatorname{CS}$, we get $N e u^{C \alpha} \operatorname{cl}(\mathfrak{D}) \sqsubseteq N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{M}$. Therefore, \mathfrak{D} is a Neu ${ }^{\text {Cg } \alpha}$ CS.
The next examples show that the reverse of the beyond theorem is not reasonable.

Example 3.10:

Let $\mathfrak{U}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and let $\psi=\left\{\phi_{\text {Neu }},\left\langle\left\{s_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{2}, s_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{1}, s_{2}, s_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{N e u}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $\mathrm{Neu}^{C} \mathrm{~S}\left\langle\left\{s_{1}, s_{2}, s_{3}\right\}, \phi, \phi\right\rangle$ is a $\mathrm{Neu}{ }^{\mathrm{Cg} \alpha g} \mathrm{CS}$ but not $\mathrm{Neu}{ }^{C} \mathrm{CS}$.

Example 3.11:

Let $\mathfrak{U}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ and let $\psi=\left\{\phi_{\text {Neu }},\left\langle\left\{s_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{1}, s_{2}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{1}, s_{2}, s_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{\text {Neu }}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $N e u^{C} \mathrm{~S}\left\langle\left\{s_{1}, s_{3}, s_{4}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C g} \mathrm{CS}$ but not $N e u^{C g \alpha g} \mathrm{CS}$.

Example 3.12:

Let $\mathfrak{U}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ and let $\psi=\left\{\phi_{N e u},\left\langle\left\{r_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{2}, r_{4}\right\}, \phi, \phi\right\rangle,\left\langle\left\{r_{1}, r_{2}, r_{4}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{N e u}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then the $N e u^{C} \mathrm{~S}\left\langle\left\{r_{1}, r_{3}\right\}, \phi, \phi\right\rangle$ is a $N e u^{C g \alpha} \mathrm{CS}$. Therefore, it is $N e u^{C \alpha g} \mathrm{CS}$, but it is not $N e u^{C g \alpha g} \mathrm{CS}$.

Definition 3.13:

A neutrosophic crisp subset \mathfrak{D} of a $\operatorname{Neu}^{C T S}(\mathfrak{U}, \psi)$ is termed a neutrosophic crisp generalized αg-open set (in brief, $N e u^{C g \alpha g}$ OS) iff $\mathfrak{u}_{N e u}-\mathfrak{D}$ is a $N e u^{C g \alpha g} \mathrm{CS}$. The collection of the whole $N e u^{C g \alpha g}$ OSs of a $N e u^{C T S}(\mathfrak{U}, \psi)$ is signified by $\mathrm{Neu}^{\mathrm{Cg} \alpha g} \mathrm{O}(\mathfrak{U})$.

Proposition 3.14:

Let (\mathfrak{U}, ψ) be a $N e u^{C T S}$. If any $N e u^{C} O S$ in (\mathfrak{U}, ψ), then it is a $N e u^{C g \alpha g} O S$.
Proof:
Let \mathfrak{D} be a $N e u^{C}$ OS in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then $\mathfrak{U}_{N e u}-\mathfrak{D}$ is a $N e u^{C} C S$ in (\mathfrak{U}, ψ). According to theorem (3.9), point (i), $\mathfrak{U}_{\text {Neu }}-\mathfrak{D}$ is a $N e u^{C g \alpha g}$ CS. Therefore, \mathfrak{D} is a $N e u^{C g \alpha g}$ OS in (\mathfrak{U}, ψ).

Proposition 3.15:

Let (\mathfrak{U}, ψ) be a $N e u^{C T S}$. If any $N e u^{C g \alpha g} O S$ is in (\mathfrak{U}, ψ), then it is a $N e u^{C g} O S$.

Proof:

Let \mathfrak{D} be a $N e u^{C g \alpha g}$ OS in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then $\mathfrak{U}_{N e u}-\mathfrak{D}$ is a $N e u^{C g \alpha g} \operatorname{CS}$ in (\mathfrak{U}, ψ). According to theorem (3.9), point (ii), $\mathfrak{U}_{\text {Neu }}-\mathfrak{D}$ is a $N e u^{C g} \mathrm{CS}$. Therefore, \mathfrak{D} is a $N e u^{C g} \operatorname{OS}$ in (\mathfrak{U}, ψ). \cdot

Theorem 3.16:

In a $N e u^{C T S}(\mathfrak{U}, \psi)$, the next arguments are valid:
(i) Each $N e u^{C g \alpha g}$ OS is a $N e u^{C \alpha g}$ OS.
(ii) Each $N e u^{C g \alpha g}$ OS is a $N e u^{C g \alpha}$ OS.

Proof:

Analogous to the beyond proposition. -

Proposition 3.17:

If \mathfrak{D} and \mathfrak{R} are $N e u^{C g \alpha g} \mathrm{CSs}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then $\mathfrak{D} \sqcup \Re$ is a $N e u^{C g \alpha g} \mathrm{CS}$.

Proof:

Let \mathfrak{D} and \mathfrak{R} be $N e u^{C g \alpha g} \operatorname{CSs}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and let \mathfrak{M} be any $N e u^{C \alpha g}$ OS including \mathfrak{D} and \mathfrak{R}. Then $\mathfrak{D} \sqcup \mathfrak{R} \subseteq \mathfrak{M}$.
Then $\mathfrak{D} \subseteq \mathfrak{M}$ and $\mathfrak{R} \sqsubseteq \mathfrak{M}$. Since \mathfrak{D} and \mathfrak{R} are $N e u^{C g \alpha g} \mathrm{CSs}, N e u^{C} c l(\mathfrak{D}) \sqsubseteq \mathfrak{M}$ and $N e u^{C} c l(\mathfrak{R}) \sqsubseteq \mathfrak{M}$. Now, $N e u^{C} \operatorname{cl}(\mathfrak{D} \sqcup \mathfrak{R})=N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqcup N e u^{C} \operatorname{cl}(\mathfrak{R}) \sqsubseteq \mathfrak{M}$ and so $N e u^{C} \operatorname{cl}(\mathfrak{D} \sqcup \mathfrak{R}) \sqsubseteq \mathfrak{M}$. Hence, $\mathfrak{D} \sqcup \mathfrak{R}$ is a $N e u^{C g \alpha g} \operatorname{CS}$.

Proposition 3.18:

If \mathfrak{D} and \mathfrak{R} are $N e u^{C g \alpha g} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then $\mathfrak{D} \Pi \Re$ is a $N e u^{C g \alpha g} O S$.

Proof:

Let \mathfrak{D} and \mathfrak{R} be $N e u^{C g \alpha g}$ OSs in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Then $\mathfrak{U}_{N e u}-\mathfrak{D}$ and $\mathfrak{U}_{N e u}-\mathfrak{R}$ are $N e u^{C g \alpha g}$ CSs. According to proposition (3.17), $\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{D}\right) \sqcup\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{R}\right)$ is a $N e u^{C g \alpha g} C S$. Subsequently, $\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{D}\right) \sqcup\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{R}\right)=\mathfrak{U}_{\text {Neu }}-$ (DПß). Therefore, $\mathfrak{D} \Pi \Re$ is a $N e u^{C g \alpha g}$ OS. -

Proposition 3.19:

If a $N e u^{C} S \mathfrak{D}$ is $N e u^{C g \alpha g} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then $N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$ includes no non-empty $N e u^{C} \operatorname{CS}$ in (\mathfrak{U}, ψ).

Proof:

Let \mathfrak{D} be a $N e u^{C g \alpha g} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and let \mathfrak{F} be any $N e u^{C} C S$ in (\mathfrak{U}, ψ) s.t. $\mathfrak{F} \sqsubseteq N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$. Since \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$, we have $N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{U}_{N e u}-\mathfrak{F}$. This implies $\mathfrak{F} \sqsubseteq \mathfrak{U}_{N e u}-N e u^{C} c l(\mathfrak{D})$. Then $\mathfrak{F} \sqsubseteq N e u^{C} c l(\mathfrak{D}) \Pi\left(\mathfrak{U}_{N e u}-N e u^{C} c l(\mathfrak{D})\right)=\phi_{N e u}$. Thus, $\mathfrak{F}=\phi_{N e u}$. Hence, $N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$ contains no non-empty $\mathrm{Neu}^{C} \mathrm{CS}$ in (\mathfrak{U}, ψ). \cdot

Proposition 3.20:

A $N e u^{C} S \mathfrak{D}$ is $N e u^{C g \alpha g} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ iff $N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$ includes no non-empty $N e u^{C \alpha g} \operatorname{CS}$ in (\mathfrak{U}, ψ).

Proof:

Let \mathfrak{D} be a $N e u^{C g \alpha g} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and let \subseteq be any $N e u^{C \alpha g} \operatorname{CS}$ in (\mathfrak{U}, ψ) s.t. $\subseteq \subseteq N e u^{C} \operatorname{cl}(\mathfrak{D})-\mathfrak{D}$.
Since \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$, we have $N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{U}_{N e u}-\mathbb{S}$. This implies $\mathfrak{S} \sqsubseteq \mathfrak{u}_{N e u}-N e u^{C} \operatorname{cl}(\mathfrak{D})$. Then $\mathfrak{S} \sqsubseteq$ $N e u^{C} \operatorname{cl}(\mathfrak{D}) \Pi\left(\mathfrak{U}_{\text {Neu }}-N e u^{C} c l(\mathfrak{D})\right)=\phi_{\text {Neu }}$. Thus, $\mathfrak{S}^{(i s ~ e m p t y}$.
On the other hand, imagine that $N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$ includes no non-empty $N e u^{C \alpha g} \operatorname{CS}$ in (\mathfrak{U}, ψ). Allow $\mathfrak{D} \subseteq \mathfrak{M}$ and \mathfrak{M} is $N e u^{C \alpha g}$ OS. If $N e u^{C} c l(\mathfrak{D}) \sqsubseteq \mathfrak{M}$ then $N e u^{C} c l(\mathfrak{D}) \Pi\left(\mathfrak{U}_{N e u}-\mathfrak{M}\right)$ is non-empty. Because $N e u^{C} c l(\mathfrak{D})$ is $N e u^{C} \mathrm{CS}$ and $\mathfrak{U}_{\text {Neu }}-\mathfrak{M}$ is $N e u^{C \alpha g} \mathrm{CS}$, we get $\operatorname{Neu} u^{C} c l(\mathfrak{D}) \Pi\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{M}\right)$ as non-empty $N e u^{C \alpha g}$ CS of $N e u^{C} c l(\mathfrak{D})$ - \mathfrak{D}, which is a conflict. Consequently, $\operatorname{Neu}{ }^{C} \operatorname{cl}(\mathfrak{D}) \nsubseteq \mathfrak{M}$. Therefore, \mathfrak{D} is a $N e u^{C g \alpha g}$ CS. •

Theorem 3.21:

If \mathfrak{D} is a $N e u^{C \alpha g} O S$ and a $N e u^{C g \alpha g} \mathrm{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$, then \mathfrak{D} is a $N e u^{C} \operatorname{CS}$ in (\mathfrak{U}, ψ).

Proof:

Assume that \mathfrak{D} is a $N e u^{C \alpha g} \mathrm{OS}$ and a $N e u^{C g \alpha g} \mathrm{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ then $N e u^{C} c l(\mathfrak{D}) \subseteq \mathfrak{D}$ and since $\mathfrak{D} \sqsubseteq$ $N e u^{C} \operatorname{cl}(\mathfrak{D})$. Therefore, $N e u^{C} \operatorname{cl}(\mathfrak{D})=\mathfrak{D}$. Hence, \mathfrak{D} is a $N e u^{C} \mathrm{CS}$. \cdot

Theorem 3.22:

If \mathfrak{D} is a $N e u^{C g \alpha g} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and $\mathfrak{D} \sqsubseteq \Re \subseteq N e u^{C} c l(\mathfrak{D})$, then \mathfrak{R} is a $N e u^{C g \alpha g} \operatorname{CS}$ in (\mathfrak{U}, ψ).

Proof:

Suppose that \mathfrak{D} is a $N e u^{C g \alpha g} C S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Let \mathfrak{M} be a $N e u^{C \alpha g} O S$ in (\mathfrak{U}, ψ) s.t. $\mathfrak{R} \sqsubseteq \mathfrak{M}$. Then $\mathfrak{D} \sqsubseteq \mathfrak{M}$. Since \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$, it follows that $\operatorname{Neu}{ }^{C} c l(\mathfrak{D}) \sqsubseteq \mathfrak{M}$. Now, $\mathfrak{R} \sqsubseteq N e u^{C} c l(\mathfrak{D})$ implies $N e u^{C} c l(\mathfrak{R}) \sqsubseteq$ $\operatorname{Neu}{ }^{C} \operatorname{cl}\left(\operatorname{Neu}{ }^{C} \operatorname{cl}(\mathfrak{D})\right)=\operatorname{Neu}^{C} \operatorname{cl}(\mathfrak{D})$. Thus, $\operatorname{Neu}^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{M}$. Hence, \mathfrak{R} is a $N e u^{C g \alpha g}$ CS. \cdot

Theorem 3.23:

If \mathfrak{D} is a $N e u^{C g \alpha g} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and $N e u^{C} \operatorname{int}(\mathfrak{D}) \sqsubseteq \mathfrak{R} \sqsubseteq \mathfrak{D}$, then \mathfrak{R} is a $N e u^{C g \alpha g} \operatorname{OS}$ in (\mathfrak{U}, ψ).

Proof:

Suppose that \mathfrak{D} is a $N e u^{C g \alpha g} O S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ and $N e u^{C} \operatorname{int}(\mathfrak{D}) \sqsubseteq \mathfrak{R} \sqsubseteq \mathfrak{D}$. Then $\mathfrak{U}_{N e u}-\mathfrak{D}$ is a $N e u^{C g \alpha g} \operatorname{CS}$ and $\mathfrak{U}_{N e u}-\mathfrak{D} \sqsubseteq \mathfrak{U}_{N e u}-\mathfrak{R} \sqsubseteq N e u^{C} \operatorname{cl}\left(\mathfrak{U}_{N e u}-\mathfrak{D}\right)$. Then $\mathfrak{U}_{N e u}-\mathfrak{R}$ is a $N e u^{C g \alpha g} C S$ corresponding to theorem (3.22). Hence, \mathfrak{R} is a $N e u^{C g \alpha g}$ OS. -

Theorem 3.24:

A $N e u^{C} \mathrm{~S} \mathfrak{D}$ is $N e u^{C g \alpha g} \operatorname{OS}$ iff $\mathfrak{P} \sqsubseteq N e u^{C} \operatorname{int}(\mathfrak{D})$ where \mathfrak{P} is a $N e u^{C g \alpha g} \mathrm{CS}$ and $\mathfrak{P} \sqsubseteq \mathfrak{D}$.

Proof:

Suppose that $\mathfrak{P} \subseteq N e u^{C} \operatorname{int}(\mathfrak{D})$ where \mathfrak{P} is a $N e u^{C g \alpha g} C S$ and $\mathfrak{P} \subseteq \mathfrak{D}$. Then $\mathfrak{U}_{N e u}-\mathfrak{D} \subseteq \mathfrak{U}_{N e u}-\mathfrak{P}$ and $\mathfrak{U}_{N e u}-\mathfrak{P}$ is a $N e u^{C \alpha g}$ OS by theorem (3.16). Now, Neu ${ }^{C} \operatorname{cl}\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{D}\right)=\mathfrak{U}_{\text {Neu }}-N e u^{C} \operatorname{int}(\mathfrak{D}) \subseteq \mathfrak{U}_{\text {Neu }}-\mathfrak{P}$. Then $\mathfrak{U}_{\text {Neu }}-\mathfrak{D}$ is a $N e u^{C g \alpha g}$ CS. Hence, \mathfrak{D} is a $N e u^{C g \alpha g}$ OS.

Conversely, let \mathfrak{D} be a $N e u^{C g \alpha g} O S$ and \mathfrak{P} be a $N e u^{C g \alpha g} C S$ and $\mathfrak{P} \subseteq \mathfrak{D}$. Then $\mathfrak{U}_{\text {Neu }}-\mathfrak{D} \subseteq \mathfrak{U}_{N e u}-\mathfrak{P}$. Since $\mathfrak{U}_{\text {Neu }}-\mathfrak{D}$ is a $N e u^{C g \alpha g} \mathrm{CS}$ and $\mathfrak{U}_{\text {Neu }}-\mathfrak{B}$ is a $N e u^{C \alpha g} O$ S, we have $N e u^{C} \operatorname{cl}\left(\mathfrak{U}_{N e u}-\mathfrak{D}\right) \subseteq \mathfrak{U}_{\text {Neu }}-\mathfrak{B}$. Then $\mathfrak{B} \sqsubseteq$ Neu ${ }^{\text {C }} \operatorname{int}(\mathfrak{D})$.

Remark 3.25:

The later chart illustrates the virtual among the separate sorts of $N e u^{C} \mathrm{CS}$:

Figure 1: The later

4. Neutrosophic Crisp $\boldsymbol{g} \alpha \boldsymbol{g}$-Closure and Neutrosophic Crisp $\boldsymbol{g} \alpha \boldsymbol{g}$-Interior

We stand for neutrosophic crisp $g \alpha g$-closure and neutrosophic crisp $g \alpha g$-interior and achieve several of their highlights in this sector.

Definition 4.1:

The overlapping of the whole $N e u^{C g \alpha g} \operatorname{CSs}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$ including \mathfrak{D} is termed neutrosophic crisp $g \alpha g$ closure of \mathfrak{D}, and it is symbolized by $\mathrm{Neu}^{\operatorname{Cg} \alpha g} \operatorname{cl}(\mathfrak{D})$.

Definition 4.2:
The union of all $N e u^{C g \alpha g}$ OSs in a $N e u^{C T S}(\mathfrak{U}, \psi)$ included in \mathfrak{D} is termed neutrosophic crisp $g \alpha g$-interior of \mathfrak{D}, and it is symbolized by $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D})$.

Theorem 4.3:

Let \mathfrak{D} be any $N e u^{C} S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Then the next issues stand:
(i) $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D})=\mathfrak{D}$ iff \mathfrak{D} is a $N e u^{C g \alpha g} O S$.
(ii) $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})=\mathfrak{D}$ iff \mathfrak{D} is a $N e u^{C g \alpha g} \mathrm{CS}$.
(iii) $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D})$ is the biggest $N e u^{C g \alpha g} O$ S included in \mathfrak{D}.
(iv) $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})$ is the fewest $N e u^{C g \alpha g} \mathrm{CS}$ including \mathfrak{D}.

Proof:
(i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let \mathfrak{D} be any $N e u^{C} S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Then the next issues stand:
(i) $N e u^{C g \alpha g} \operatorname{int}\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{D}\right)=\mathfrak{U}_{\text {Neu }}-\left(N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})\right)$,
(ii) $N e u^{C g \alpha g} c l\left(\mathfrak{U}_{N e u}-\mathfrak{D}\right)=\mathfrak{U}_{\text {Neu }}-\left(N e u^{\operatorname{Cg} \alpha g} \operatorname{int}(\mathfrak{D})\right)$.

Proof:
(i) By definition, $N e u^{C g \alpha g} c l(\mathfrak{D})=\Pi\left\{\Re: \mathfrak{D} \sqsubseteq \Re, \Re\right.$ is a $\left.N e u^{C g \alpha g} C S\right\}$
$\mathfrak{U}_{\text {Neu }}-\left(N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})\right)=\mathfrak{U}_{\text {Neu }}-\Pi\left\{\mathfrak{R}: \mathfrak{D} \subseteq \mathfrak{R}, \mathfrak{R}\right.$ is a $\left.N e u^{C g \alpha g} \mathrm{CS}\right\}$

$$
=\bigsqcup\left\{\mathfrak{U}_{\text {Neu }}-\mathfrak{R}: \mathfrak{D} \sqsubseteq \mathfrak{R}, \mathfrak{R} \text { is a } \text { Neu }^{\text {Cgag }} \mathrm{CS}\right\}
$$

$$
\begin{aligned}
& =\sqcup\left\{\mathfrak{M}: \mathfrak{U}_{\text {Neu }}-\mathfrak{D} \supseteq \mathfrak{M}, \mathfrak{M} \text { is a } N e u^{C g \alpha g} \mathrm{OS}\right\} \\
& =N e u^{C g \alpha g} \operatorname{int}\left(\mathfrak{U}_{\text {Neu }}-\mathfrak{D}\right) .
\end{aligned}
$$

(ii) The validation is the same as (i). -

Theorem 4.5:

Let \mathfrak{D} and \mathfrak{R} be two $N e u^{C}$ Ss in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Then the following properties hold:
(i) $N e u^{C g \alpha g} c l\left(\phi_{\text {Neu }}\right)=\phi_{\text {Neu }}, N e u^{C g \alpha g} c l\left(\mathfrak{U}_{\text {Neu }}\right)=\mathfrak{U}_{\text {Neu }}$.
(ii) $\mathfrak{D} \subseteq \mathrm{Neu}^{\mathrm{Cg} \mathrm{\alpha g}} \operatorname{cl}(\mathfrak{D})$.
(iii) $\mathfrak{D} \sqsubseteq \Re \Rightarrow N e u^{C g \alpha g} c l(\mathfrak{D}) \sqsubseteq N e u^{C g \alpha g} c l(\mathfrak{R})$.
(iv) $N e u^{C g \alpha g} c l(\mathfrak{D} \cap \Re) \sqsubseteq N e u^{C g \alpha g} c l(\mathfrak{D}) \cap N e u^{\operatorname{Cg} \alpha g} c l(\Re)$.
(v) $N e u^{C g \alpha g} c l(\mathfrak{D U R})=N e u^{C g \alpha g} c l(\mathfrak{D}) \cup N e u^{C g \alpha g} c l(\Re)$.
(vi) $N e u^{\operatorname{Cg} \alpha g} \operatorname{cl}\left(\mathrm{Neu}^{\operatorname{Cg} \alpha g} \operatorname{cl}(\mathfrak{D})\right)=N e u^{\operatorname{Cg} \alpha g} \operatorname{cl}(\mathfrak{D})$.

Proof:

(i) and (ii) are apparent.
(iii) By part (ii), $\mathfrak{R} \sqsubseteq N e u^{C g \alpha g} c l(\Re)$. Since $\mathfrak{D} \sqsubseteq \Re$, we have $\mathfrak{D} \sqsubseteq N e u^{\operatorname{Cg} \alpha g} c l(\Re)$. But $N e u^{C g \alpha g} c l(\Re)$ is a $N e u^{C g \alpha g} \mathrm{CS}$. Thus $N e u^{C g \alpha g} c l(\Re)$ is a $N e u^{C g \alpha g} \mathrm{CS}$ containing \mathfrak{D}. Since $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})$ is the smallest $N e u^{C g \alpha g} \mathrm{CS}$ containing \mathfrak{D}, we have $N e u^{C g \alpha g} c l(\mathfrak{D}) \subseteq N e u^{C g \alpha g} c l(\Re)$.
(iv) We know that $\mathfrak{D} \Pi \Re \subseteq \mathfrak{D}$ and $\mathfrak{D}\rceil \Re \sqsubseteq \Re$. Therefore, by part (iii), $N e u^{\operatorname{Cg\alpha g}} \operatorname{cl}(\mathfrak{D} \Pi \Re) \subseteq N e u^{\operatorname{Cg\alpha g}} \operatorname{cl}(\mathfrak{D})$ and $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D} \sqcap \Re) \sqsubseteq N e u^{C g \alpha g} c l(\Re)$. Hence $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D} \Pi \mathfrak{R}) \sqsubseteq N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D}) \Pi N e u^{C g \alpha g} \operatorname{cl}(\Re)$.
(v) Since $\mathfrak{D} \subseteq \mathfrak{D} \sqcup \Re$ and $\mathfrak{R} \subseteq \mathfrak{D} \sqcup \Re$, it follows from part (iii) that $N e u^{\operatorname{Cg\alpha g}} \operatorname{cl}(\mathfrak{D}) \subseteq N e u^{\operatorname{Cg\alpha g}} \operatorname{cl}(\mathfrak{D} \sqcup \Re)$ and $N e u^{C g \alpha g} c l(\Re) \sqsubseteq N e u^{C g \alpha g} c l(\mathfrak{D} \sqcup \Re)$. Hence $N e u^{C g \alpha g} c l(\mathfrak{D}) \sqcup N e u^{C g \alpha g} c l(\Re) \sqsubseteq N e u^{C g \alpha g} c l(\mathfrak{D} \sqcup \Re)$ \qquad
Since $N e u^{C g \alpha g} c l(\mathfrak{D})$ and $N e u^{C g \alpha g} c l(\Re)$ are $N e u^{C g \alpha g} \mathrm{CSs}, N e u^{C g \alpha g} c l(\mathfrak{D}) \sqcup N e u^{C g \alpha g} c l(\Re)$ is also $N e u^{C g \alpha g}$ CS by proposition (3.17). Also $\mathfrak{D} \sqsubseteq N e u^{\operatorname{Cg} \alpha g} c l(\mathfrak{D}) \quad$ and $\mathfrak{R} \sqsubseteq N e u^{\operatorname{Cg} \alpha g} c l(\mathfrak{R}) \quad$ implies that $\mathfrak{D} \bigsqcup \Re \sqsubseteq N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D}) \sqcup N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{R})$. Thus $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D}) \sqcup N e u^{C g \alpha g} c l(\Re)$ is a $N e u^{C g \alpha g} \operatorname{CS}$ containing $\mathfrak{D} \sqcup \mathfrak{R}$. Since $N e u^{C g \alpha g} c l(\mathfrak{D} \downarrow \Re)$ is the smallest $N e u^{C g \alpha g} C S$ containing $\mathfrak{D} \sqcup \Re$, we have $N e u^{C g \alpha g} c l(\mathfrak{D} \sqcup \mathfrak{R}) \sqsubseteq N e u^{C g \alpha g} c l(\mathfrak{D}) \sqcup N e u^{\text {Cg } \alpha g} c l(\Re)$.
From (1) and (2), we have $N e u^{C g \alpha g} c l(\mathfrak{D} \sqcup \mathfrak{R})=N e u^{C g \alpha g} c l(\mathfrak{D}) \sqcup N e u^{C g \alpha g} c l(\Re)$.
(vi) Since $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})$ is a $N e u^{C g \alpha g} \mathrm{CS}$, we have by theorem (4.3) part (ii), $N e u^{C g \alpha g} \operatorname{cl}\left(N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})\right)=$ $N e u^{C g \alpha g} \operatorname{cl}(\mathfrak{D})$.

Theorem 4.6:

Let \mathfrak{D} and \mathfrak{R} be two $\mathrm{Neu}^{C} \mathrm{Ss}$ in a $\mathrm{Neu}^{C T S}(\mathfrak{U}, \psi)$. Then the following properties hold:
(i) $N e u^{C g \alpha g} \operatorname{int}\left(\phi_{N e u}\right)=\phi_{N e u}, N e u^{C g \alpha g} \operatorname{int}\left(\mathfrak{U}_{N e u}\right)=\mathfrak{U}_{\text {Neu }}$.
(ii) $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D}) \subseteq \mathfrak{D}$.
(iii) $\mathfrak{D} \sqsubseteq \Re \Rightarrow N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D}) \sqsubseteq N e u^{C g \alpha g} \operatorname{int}(\Re)$.
(iv) $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D} \sqcap \Re)=N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D}) \Pi N e u^{C g \alpha g} \operatorname{int}(\Re)$.
(v) $N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D} \sqcup \Re) \supseteq N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D}) \sqcup N e u^{C g \alpha g} \operatorname{int}(\Re)$.
(vi) $N e u^{C g \alpha g} \operatorname{int}\left(N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D})\right)=N e u^{C g \alpha g} \operatorname{int}(\mathfrak{D})$.

Proof:
(i), (ii), (iii), (iv), (v) and (vi) are apparent. -

Definition 4.7:

A $N e u^{C T S}(\mathfrak{U}, \psi)$ is called a neutrosophic crisp $T_{\frac{1}{2}}$-space (in short, $N e u^{C} T_{\frac{1}{2}}$-space) if each $N e u^{C g}$ CS in it is a $N e u^{C}$ CS.

Definition 4.8:

A $N e u^{C T S}(\mathfrak{U}, \psi)$ is called a neutrosophic crisp $T_{g \alpha g}$-space (in short, $N e u^{C} T_{g \alpha g}$-space) if each $N e u^{C g \alpha g} \mathrm{CS}$ in it is a $\mathrm{Neu}^{C} \mathrm{CS}$.

Proposition 4.9:

Every $N e u^{C} T_{\frac{1}{2}}$-space is a $N e u^{C} T_{g \alpha g}$-space.

Proof:

Let (\mathfrak{U}, ψ) be a $N e u^{C} T_{\frac{1}{2}}$-space and let \mathfrak{D} be a $N e u^{C g \alpha g} \mathrm{CS}$ in \mathfrak{U}. Then \mathfrak{D} is a $N e u^{C g} \mathrm{CS}$, by theorem (3.9) part (ii).
Since (\mathfrak{U}, ψ) is a $N e u^{C} T_{\frac{1}{2}}^{2}$-space, then \mathfrak{D} is a $N e u^{C} \operatorname{CS}$ in \mathfrak{U}. Hence (\mathfrak{U}, ψ) is a $N e u^{C} T_{g \alpha g}$-space. -
The next instance reveals that the overhead proposition's converse is not reasonable.

Example 4.10:

Let $\mathfrak{U}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and let $\psi=\left\{\phi_{\text {Neu }},\left\langle\left\{s_{1}\right\}, \phi, \phi\right\rangle,\left\langle\left\{s_{2}, s_{3}\right\}, \phi, \phi\right\rangle, \mathfrak{U}_{\text {Neu }}\right\}$ be a $N e u^{C T}$ on \mathfrak{U}. Then (\mathfrak{U}, ψ) is a $\mathrm{Neu}{ }^{C} T_{g \alpha g}$-space but not $\mathrm{Neu}^{C} T_{\frac{1}{2}}$-space.

Proposition 4.11:

For a $N e u^{C T S}(\mathfrak{U}, \psi)$, the following statements are equivalent:
(i) (\mathfrak{U}, ψ) is a $N e u^{C} T_{g \alpha g}$-space.
(ii) Every singleton of a $\mathrm{Neu}^{C T S}(\mathfrak{U}, \psi)$ is either $\mathrm{Neu}^{C \alpha g} \mathrm{CS}$ or Neu^{C} OS.

Proof:

(i) \Rightarrow (ii) Assume that for some $u \in \mathfrak{U}$ the $N e u^{C} S\langle\{u\}, \phi, \phi\rangle$ is not a $N e u^{C \alpha g} C S$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$. Then the only $N e u^{C \alpha g}$ OS containing $\mathfrak{U}_{\text {Neu }}-\langle\{u\}, \phi, \phi\rangle$ is the space \mathfrak{U} itself and $\mathfrak{U}_{N e u}-\langle\{u\}, \phi, \phi\rangle$ is a $N e u^{C g \alpha g} \operatorname{CS}$ in ($\left.\mathfrak{U}, \psi\right)$. By assumption $\mathfrak{U}_{N e u}-\langle\{u\}, \phi, \phi\rangle$ is a $N e u^{C} \operatorname{CS}$ in (\mathfrak{U}, ψ) or equivalently $\langle\{u\}, \phi, \phi\rangle$ is a $N e u^{C} O S$.
(ii) $\Rightarrow\left(\right.$ i) Let \mathfrak{D} be a $N e u^{C g \alpha g} \mathrm{CS}$ in (\mathfrak{U}, ψ) and let $u \in N e u^{C} c l(\mathfrak{D})$. By assumption $\langle\{u\}, \phi, \phi\rangle$ is either $N e u^{C \alpha g} \mathrm{CS}$ or $\mathrm{Ne} u^{C}$ OS.
Case(1). Suppose $\langle\{u\}, \phi, \phi\rangle$ is a $N e u^{C \alpha g}$ CS. If $u \notin \mathfrak{D}$, then $N e u^{C} c l(\mathfrak{D})-\mathfrak{D}$ contains a non-empty $N e u^{C \alpha g} \mathrm{CS}$ $\langle\{u\}, \phi, \phi\rangle$ which is a contradiction. Therefore $u \in \mathfrak{D}$.
Case(2). Suppose $\langle\{u\}, \phi, \phi\rangle$ is a $N e u^{C} O S$. Since $u \in N e u^{C} c l(\mathfrak{D}),\langle\{u\}, \phi, \phi\rangle \Pi \mathfrak{D} \neq \phi_{N e u}$ and therefore $N e u^{C} \operatorname{cl}(\mathfrak{D}) \sqsubseteq \mathfrak{D}$ or equivalently \mathfrak{D} is a $N e u^{C} \operatorname{CS}$ in a $N e u^{C T S}(\mathfrak{U}, \psi)$.

5. Conclusion

The sense of $N e u^{C g \alpha g}$ CS distinguished employing $N e u^{C \alpha g} C S$ creates a $N e u^{C T}$ and remains among the idea of $N e u^{C} \mathrm{CS}$ and the idea of $\mathrm{Neu}^{\mathrm{Cg}} \mathrm{CS}$. The $\mathrm{Neu}^{\mathrm{Cg} \mathrm{\alpha g}} \mathrm{CS}$ can be utilized to derive a new decomposition of $\mathrm{Neu}{ }^{C g \alpha g}$ continuity and new $\mathrm{Neu}{ }^{\mathrm{Cg} \mathrm{\alpha g}}$-separation axioms.

Funding: There is no external grant for this work.
Acknowledgments: The authors are appreciative of the referees for their constructive comments.

Conflicts of Interest: There are no conflicts of interest declared by the authors.

References

[1] A.A.Salama, Hewayda ElGhawalby, A.M.Nasr, On Neutrosophic Crisp Relations, International Journal of Neutrosophic Science, 1 (2019) : 35-46
[2] A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets \& possible application to GIS topology. Neutrosophic Sets and Systems, 7(2015), 18-22.
[3] R. K. Al-Hamido, Q. H. Imran, K. A. Alghurabi and T. Gharibah, On neutrosophic crisp semi- α-closed sets. Neutrosophic Sets and Systems, 21(2018), 28-35.
[4] A. H. M. Al-Obaidi and Q. H. Imran, On new types of weakly neutrosophic crisp open mappings. Iraqi Journal of Science, 62(8) (2021), 2660-2666.
[5] A. H. M. Al-Obaidi, Q. H. Imran and M. M. Abdulkadhim, On new types of weakly neutrosophic crisp closed functions. Neutrosophic Sets and Systems, 50(2022), 239-247.
[6] Md. Hanif PAGE and Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems, 35(2020), 340-346.
[7] Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi and Md. Hanif PAGE, On neutrosophic generalized alpha generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.
[8] Q. H. Imran, R. K. Al-Hamido and A. H. M. Al-Obaidi, On new types of weakly Neutrosophic crisp continuity. Neutrosophic Sets and Systems, 38(2020), 179-187.
[9] Q. H. Imran, K. S. Tanak, and A. H. M. Al-Obaidi, On new concepts of neutrosophic crisp open sets. Journal of Interdisciplinary Mathematics, 25(2) (2022), 563-572.
[10] W. Al-Omeri, Neutrosophic crisp sets via neutrosophic crisp topological spaces NCTS. Neutrosophic Sets and Systems, 13(2016), 96-104.

