calculate λmax

 For polyenes with more than 4 conjugated double bonds, Fieser-Kuhn rule is used to calculate λmax Fieser-Kuhn derived the following equation to calculate the wavelength of maximum absorption λmax and also maximum absorptivity εmax

 λ max = 114 + 5x + y (48.0 - 1.7 y) - 16.5 Rendo - 10 Rexo

calculate λmax

- Where:
- λ max is the wavelength of maximum absorption
- x is the number of alkyl substituents / ring residues in the conjugated system
- y is the number of conjugated double bonds
- R endo is the number of rings with endocyclic double bonds in the conjugated system
- R exo is the number of rings with exocyclic double bonds in the conjugated system

- x (number of alkyl substituents) = 10
- y (number of conjugated double bonds) = 11
- Rendo (number of endocyclic double bonds) = 2
- Rexo (number of exocyclic double bonds) = 0 $\lambda \max = 114 + 5x + y (48.0 - 1.7 y) - 16.5$ Rendo -10 Rexo = 114 + 5(10) + 11 (48.0 - 1.7(11)) - 16.5 (2) - 10 (0) = 114 + 50 + 11 (29.3) - 33 - 0 = 114 + 50 + 322.3 - 33 = 453.30 nm

Woodward Fieser Rules

- In 1945 Robert Burns Woodward gave certain rules for correlating λ max with molecular structure.
- In 1959 Louis Frederick Fieser modified these rules with more experimental data, and the modified rule is known as Woodward-Fieser Rules.
- Each type of diene or triene system is having a certain fixed value at which absorption takes place; this constitutes the Base value or Parent value.

Woodward Fieser Rules

 The contribution made by various alkyl substituents or ring residue, double bond extending conjugation and polar groups such as –Cl, - Br etc are added to the basic value to obtain λmax for a particular compound.

CONJUGATED DIENE CORRELATIONS:

 Homoannular Diene:- Cyclic diene having conjugated double bonds in same ring

- Heteroannular Diene:-
- Cyclic diene having conjugated double bonds in different rings.

- Endocyclic double bond:- Double bond present in a ring.
- Exocyclic double bond: Double bond in which one of the doubly bonded atoms is a part of a ring

 Here Ring A has one exocyclic and endocyclic double bond. Ring B has only one endocyclic double bond.

PARENT VALUES AND INCREMENTS FOR DIFFERENT

SUBSTITUENTS/GROUPS:

- i) Base value for an unsubstituted, conjugated, homoannular diene = 253 nm.
- ii) Base value for an unsubstituted, conjugated, acyclic or heteroannular diene = 214 nm.
- Each extra double bonds in conjugation + 30 nm.
- Exocyclic double bond (effect is twofold if the bond is exocyclic to two rings) + 5 nm

Substituent effect:

- -OCOR or -OCOAr + 0 nm
- Simple alkyl substituents or ring residue+5 nm
- Halogen (-Cl, -Br) + 5 nm
- OR (R=Alkyl) + 6 nm
- SR (R=Alkyl + 30 nm
- NR2 (R=Alkyl) + 60 nm

Base value = 214 nmRing residue = $3 \times 5 = 15 \text{ nm}$

Exocyclic double bond $= 1 \times 5 = 5 \text{ nm}$

 $\lambda_{max} = 214 + 15 + 5 = 234 \text{ nm}$

base value : 214 nm 3 ring residues : +15 1 exocyclic C=C : +5. Total λ_{max} : 234 nm Observed : 235 nm

base value :214 nm 3 ring residues :+15 1 exocyclic C=C :+5 -OR :+6. Total λ_{max} : 240 nm Observed : 241 nm

base Value: 253 nm 3 Ring residues: +15 1 Exocyclic C=C: + 5 Double-bond Extending Conjugation: +30. Total λ_{max} : 303 nm Observed: 304 nm

base value (Homoannular) : 253 nm 3 ring residues : +15 1 exocyclic C=C : + 5 Total λ_{max} : 273 nm (Observed : 235 nm)

Base value: 214 nm

2 Ring residue +10 Exocyclic C=C: + 5 Total λ_{max}: 229 nm

Observed: 230 nm

Base value: 214 nm 2 Ring residue: +10 Exocyclic C=C: +5. Total λ_{max} 229 nm Observed: 236 nm

Transoid (base): 214 nm 5 ring residues: +25 1 DEC: +30 3 exocyclic C=C +15. Total λ_{max} : 284 nm Observed: 283 nm

Cisoid (base): 253 nm 3 ring residues: +15 1 Alkyl subs: +5 1 exocyclic C=C +5. Total λ_{max}: 278 nm Observed: 275 nm

Cisoid (base): 253 nm 5 ring residues: +25 2 DEC: +60 3 exocyclic C=C +15. Total λ_{max} : 353 nm Observed: 355 nm

ENONE: Rules of Enon & Dienone Absorption Base values:

- Acyclic α , β -unsaturated ketones 215 nm
- 6-membered cyclic α,β-unsaturated ketones 215 nm
- 5-membered cyclic α,β-unsaturated ketones 202 nm
- α , β -unsaturated aldehydes 210 nm
- α,β-unsaturated carboxylic acid & esters 195 nm
- Increments for:
- Double bond extending conjugation (DEC): +30
- Exocyclic double bond: + 5
- Homodiene component: +39

Substituent effect:

 Alkyl group/ring residue: α position +10, β position +12, γ & higher position +18

Polar. groups:

- -OH: α position +35, β position +30, δ position +50
- OAc: α, β, γ + 6
- OMe: α +35, β +30 γ +17 δ +31.
- SAlk: β +85 -Cl: α +15 β +12 -Br: α +25 β +30 -NR2: β +95

Base value:	215 nm
a substituent:	+10
β substituent:	+12
Total:	237 nm
Observed:	232 nm

Base value:	202 nm
β substituent:	+12
α-OH:	+35
Total:	249 nm
Observed:	247 nm

Base value:	202 nm
1 α-Br:	+25
2 β-ring residue:	+24
Exocyclic C=C:	+ 5
Total:	256 nm
Observed:	251 nm

Base value:	202 nm
Exocyclic C=C:	+ 5
2 β-ring residues:	+24
Total:	231 nm
Observed:	226 nm

Base value:	215 nm
1 DEC:	+30
β-ring residue:	+12
δ ring residue:	+18
2 Exocyclic C=C:	+ 5
Total:	280 nm
Observed:	280 nm

Base value: a alkyl substituent: ß alkyl substituent: Total: 215 nm +10 +12 237 nm

Base value:	215 nm
1 DEC:	+30
Exocyclic C=C:	+ 5
β-alkyl substituent:	+12
y-alkyl substituent:	+18
δ-alkyl substituent:	+18
Total:	298 nm

	Ŭ
<	

Base value:	215 nm
a alkyl:	+10
β alkyl:	+12
Total:	237 nm

Base value:	215 nm
1 a-alkyl:	+10
2 β-alkyl:	+24
2 Exocyclic C=C:	+10
Total:	259 nm