
Computer Architecture
Second year

Dr. Salah Al-Obaidi

Lecture #8: Performance Issues Spring 2024

Contents

Contents i

10 Performance Issues 86

10.1 Microprocessor Speed . 86

10.2 Basic Measures of Computer Performance 88

i

10. Performance Issues

This lecture addresses the issue of computer system performance.

10.1 Microprocessor Speed

In microprocessors, the addition of new circuits, and the speed boost that comes from

reducing the distances between them, has improved performance four- or fivefold every

three years or so since Intel launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless it is fed a

constant stream of work to do in the form of computer instructions. Accordingly, while the

chipmakers have been busy learning how to fabricate chips of greater and greater density,

the processor designers must come up with ever more elaborate techniques for feeding the

processor. Among the techniques built into contemporary processors are the following:

• Pipelining: The execution of an instruction involves multiple stages of operation,

including fetching the instruction, decoding the opcode, fetching operands, performing

a calculation, and so on. Pipelining enables a processor to work simultaneously

on multiple instructions by performing a different phase for each of the multiple

instructions at the same time. The processor overlaps operations by moving

data or instructions into a conceptual pipe with all stages of the pipe processing

simultaneously. For example, while one instruction is being executed, the computer

is decoding the next instruction. This is the same principle as seen in an assembly

line.

86

10.1. Microprocessor Speed

• Branch prediction: The processor looks ahead in the instruction code fetched from

memory and predicts which branches, or groups of instructions, are likely to be

processed next. If the processor guesses right most of the time, it can prefetch the

correct instructions and buffer them so that the processor is kept busy. The more

sophisticated examples of this strategy predict not just the next branch but multiple

branches ahead. Thus, branch prediction potentially increases the amount of work

available for the processor to execute.

• Superscalar execution: This is the ability to issue more than one instruction in every

processor clock cycle. In effect, multiple parallel pipelines are used.

• Data flow analysis: The processor analyzes which instructions are dependent on

each other’s results, or data, to create an optimized schedule of instructions. In fact,

instructions are scheduled to be executed when ready, independent of the original

program order. This prevents unnecessary delay.

• Speculative execution: Using branch prediction and data flow analysis, some

processors speculatively execute instructions ahead of their actual appearance in

the program execution, holding the results in temporary locations. This enables the

processor to keep its execution engines as busy as possible by executing instructions

that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power of the

processor. Collectively they make it possible to execute many instructions per processor

cycle, rather than to take many cycles per instruction.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that

of main memory and other computer components, the need to increase processor speed

remains. There are three approaches to achieving increased processor speed:

• Increase the hardware speed of the processor. This increase is fundamentally due

to shrinking the size of the logic gates on the processor chip, so that more gates

87

10. Performance Issues

can be packed together more tightly and to increasing the clock rate. With gates

closer together, the propagation time for signals is significantly reduced, enabling

a speeding up of the processor. An increase in clock rate means that individual

operations are executed more rapidly.

• Increase the size and speed of caches that are interposed between the processor and

main memory. In particular, by dedicating a portion of the processor chip itself to

the cache, cache access times drop significantly.

• Make changes to the processor organization and architecture that increase the

effective speed of instruction execution. Typically, this involves using parallelism in

one form or another.

Traditionally, the dominant factor in performance gains has been in increases in clock

speed due and logic density.

10.2 Basic Measures of Computer Performance

In evaluating processor hardware and setting requirements for new systems, performance

is one of the key parameters to consider, along with cost, size, security,

reliability, and, in some cases, power consumption. It is difficult to make meaningful

performance comparisons among different processors, even among processors in the same

family. Raw speed is far less important than how a processor performs when executing a

given application.

The application performance depends on the following:

1. the raw speed of the processor.

2. the instruction set.

3. choice of implementation language.

4. efficiency of the compiler.

5. skill of the programming done to implement the application.

88

10.2. Basic Measures of Computer Performance

In this section, we look at some traditional measures of processor speed.

Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the

instruction, performing an arithmetic operation, and so on, are governed by a system clock.

Typically, all operations begin with the pulse of the clock. Thus, at the most fundamental

level, the speed of a processor is dictated by the pulse frequency produced by the clock,

measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a constant

sine wave while power is applied. This wave is converted into a digital voltage pulse stream

that is provided in a constant flow to the processor circuitry (Figure 10.1). For example, a

1-GHz processor receives 1 billion pulses per second. The rate of pulses is known as the

clock rate, or clock speed. One pulse of the clock is referred to as a clock cycle, or a

clock tick. The time between pulses is the cycle time.

Figure 10.1: System Clock.

The clock rate is not arbitrary, but must be appropriate for the physical layout of the

processor. Actions in the processor require signals to be sent from one processor element to

89

10. Performance Issues

another. When a signal is placed on a line inside the processor, it takes some finite amount

of time for the voltage levels to settle down so that an accurate value (logical 1 or 0) is

available. Furthermore, depending on the physical layout of the processor circuits, some

signals may change more rapidly than others. Thus, operations must be synchronized and

paced so that the proper electrical signal (voltage) values are available for each operation.

The execution of an instruction involves a number of discrete steps, such as fetching

the instruction from memory, decoding the various portions of the instruction, loading and

storing data, and performing arithmetic and logical operations. Thus, most instructions

on most processors require multiple clock cycles to complete. Some instructions may

take only a few cycles, while others require dozens. In addition, when pipelining is used,

multiple instructions are being executed simultaneously. Thus, a straight comparison of

clock speeds on different processors does not tell the whole story about performance.

Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a constant

cycle time τ , where τ = 1/f. Define the instruction count, Ic, for a program as the

number of machine instructions executed for that program until it runs to completion or

for some defined time interval. Note that this is the number of instruction executions, not

the number of instructions in the object code of the program. An important parameter is

the average cycles per instruction (CPI) for a program. If all instructions required the

same number of clock cycles, then CPI would be a constant value for a processor. However,

on any given processor, the number of clock cycles required varies for different types of

instructions, such as load, store, branch, and so on. Let CP Ii be the number of cycles

required for instruction type i, and Ii be the number of executed instructions of type i for

a given program. Then we can calculate an overall CPI as follows:

CPI =
∑n

i=1 CPIi × Ii

Ic

(10.1)

The processor time T needed to execute a given program can be expressed as

T = Ic × CPI × τ (10.2)

90

10.2. Basic Measures of Computer Performance

We can refine this formulation by recognizing that during the execution of an instruction,

part of the work is done by the processor, and part of the time a word is being transferred

to or from memory. In this latter case, the time to transfer depends on the memory cycle

time, which may be greater than the processor cycle time. We can rewrite the preceding

equation as

T = Ic × [p + (m × k)] × τ (10.3)

where p is the number of processor cycles needed to decode and execute the instruction,

m is the number of memory references needed, and k is the ratio between memory cycle

time and processor cycle time. The five performance factors in the preceding equation

(Ic, p, m, k, t) are influenced by four system attributes:

1. the design of the instruction set

2. compiler technology (how effective the compiler is in producing an efficient machine

language program from a high-level language program)

3. processor implementation;

4. cache and memory hierarchy

Table 10.1 is a matrix in which one dimension shows the five performance factors and

the other dimension shows the four system attributes. An X in a cell indicates a system

attribute that affects a performance factor.

Table 10.1: Performance Factors and System Attributes

Ic p m k τ
Instruction set architecture X X
Compiler technology X X X
Processor implementation X X
Cache and memory hierarchy X X

A common measure of performance for a processor is the rate at which instructions

are executed, expressed as millions of instructions per second (MIPS), referred to as

91

10. Performance Issues

the MIPS rate. We can express the MIPS rate in terms of the clock rate and CPI as

follows:

MIPSrate = Ic

T × 106 = f

CPI × 106 (10.4)

Another common performance measure deals only with floating-point instructions.

These are common in many scientific and game applications. Floating-point performance

is expressed as millions of floating-point operations per second (MFLOPS), defined as

follows:

MFLOPSrate = Number of executed floating point operations in a program

Execution time × 106

(10.5)

92

	Contents
	Performance Issues
	Microprocessor Speed
	Basic Measures of Computer Performance

