
43

Chapter 4
 Boolean algebra

4.1 Definition

 Boolean algebra is the mathematics of digital logic in which the values
of the variables are the truth values true and false, usually denoted 1 and 0,
respectively.

 Basic knowledge of Boolean algebra is indispensable to the study and
analysis of logic circuits. Variable, complement, and literal are terms used in
Boolean algebra. A variable is a symbol (usually an italic uppercase letter or
word) used to represent an action, a condition, or data. Any single variable can
have only a 1 or a 0 value. The complement is the inverse of a variable and is
indicated by a bar over the variable (overbar).

There are four connecting symbols used in Boolean algebra:

1. Equal sign (=): This refers to the sign of equality as in mathematics.

2. Multiplication sign (·): It refers to the AND operation.

3. Plus sign (+): This refers to the OR operation.

4. Inversion sign (‘) or (−): This operation performs a complement of the input
given to the logic gate.

4.2 Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and
multiplication, the associative laws for addition and multiplication, and the
distributive law—are the same as in ordinary algebra. Each of the laws is
illustrated with two or three variables, but the number of variables is not
limited to this.

44

4.2.1 Commutative Laws

 The commutative laws of addition and multiplication for two variables
are written as:

 A + B = B + A AB = BA

4.2.2 Associative Laws

 This law states that when ORing more than two variables, the result is
the same regardless of the grouping of the variables. The figure below
illustrates this law as applied to 2-input OR gates. The associative law of
addition is written as follows for 3 variables:

 A + (B + C) = (A + B) + C

 This law states that it is no difference in the order in which the variables
are grouped when ANDing more than two variables. The figure below
illustrates this law as applied to 2-input AND gates. The associative law of
multiplication is written as follows for 3 variables:

 A (BC) = (AB) C

4.2.3 Distributive Law

 The distributive law is written for three variables as follows:

 A (B + C) = AB + AC

45

4.3 Rules of Boolean Algebra

The table below lists 12 basic rules that are useful in manipulating and
simplifying Boolean expressions. A, B, or C can represent a single variable or
a combination of variables.

Rule 1: A variable ORed with 0 is always equal to the variable. If the input
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the
output is 0, which is also equal to A.

Rule 2: A variable ORed with 1 is always equal to 1. A 1 on an input to an
OR gate produces a 1 on the output, regardless of the value of the variable on
the other input.

46

Rule 3: A variable ANDed with 0 is always equal to 0. Any time one input to
an AND gate is 0, the output is 0, regardless of the value of the variable on the
other input.

Rule 4: A variable ANDed with 1 is always equal to the variable. If A is 0,
the output of the AND gate is 0. If A is 1, the output of the AND gate is 1
because both inputs are now 1s.

Rule 5: A variable ORed with itself is always equal to the variable. If A is 0,
then 0 + 0 = 0; and if A is 1, then 1 + 1 = 1.

Rule 6: A variable ORed with its complement is always equal to 1. If A is 0,
then 0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1.

47

Rule 7: A variable ANDed with itself is always equal to the variable. If
A = 0, then 0 #0 = 0; and if A = 1, then 1 #1 = 1.

Rule 8: A variable ANDed with its complement is always equal to 0. Either
A or A will always be 0; and when a 0 is applied to the input of an AND gate,
the output will be 0 also.

Rule 9: The double complement of a variable is always equal to the variable.
If you start with the variable A and complement (invert) it once, you get A. If
you then take A and complement (invert) it, you get A, which is the original
variable.

Rule 10: This rule can be proved by applying the distributive law, rule 2,
and rule 4 as follows:

𝐴 + 𝐴𝐵 = 𝐴 . 1 + 𝐴𝐵 = 𝐴 (1 + 𝐵) Factoring (distributive law)

= 𝐴 . 1 Rule 2: (1 + 𝐵) = 1

= 𝐴 Rule 4: 𝐴 . 1 = 𝐴

The proof is shown in below, which shows the truth table and the resulting
logic circuit simplification.

48

Rule 11: This rule can be proved as follows:

𝐴 + 𝐴𝐵 = (𝐴 + 𝐴𝐵) + 𝐴𝐵 Rule 10: A = A + AB

=(𝐴𝐴 + 𝐴𝐵) + 𝐴𝐵 Rule 7: A = AA

=AA + AB + AA + AB Rule 8: adding AA = 0

= (A + A)(A + B) Factoring

= 1 . (A + B) Rule 6: A + A = 1

= A + B Rule 4: drop the 1

The proof is shown in the table below, which shows the truth table and the
resulting logic circuit simplification.

49

Rule 12: This rule can be proved as follows:

(A + B)(A + C) = AA + AC + AB + BC Distributive law

= A + AC + AB + BC Rule 7: AA = A

= A(1 + C) + AB + BC Factoring (distributive law)

= A .1 + AB + BC Rule 2: 1 + C = 1

= A(1 + B) + BC Factoring (distributive law)

= A . 1 + BC Rule 2: 1 + B = 1

= A + BC Rule 4: A. 1 = A

The proof is shown in the table below, which shows the truth table and the
resulting logic circuit simplification.

H.W:

1. Apply the associative law of addition to the expression A + (B + C + D).

2. Apply the distributive law to the expression A(B + C + D).

50

4.4 DeMorgan’s Theorems

DeMorgan, a mathematician, proposed two theorems that are an important
part of Boolean algebra. In practical terms, DeMorgan’s theorems provide
mathematical verification of the equivalency of the NAND and negative-OR
gates and the equivalency of the NOR and negative-AND gates.

4.4.1 DeMorgan’s first theorem

The complement of a product of variables is equal to the sum of the
complements of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of
the complements of the individual variables.

The formula for expressing this theorem for two variables is

𝑋𝑌 = 𝑋 + 𝑌 ……… (1)

4.4.2 DeMorgan’s second theorem

The complement of a sum of variables is equal to the product of the
complements of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of
the

complements of the individual variables.

The formula for expressing this theorem for two variables is

𝑋 + 𝑌 = 𝑋𝑌 ……… (2)

Figure below shows the gate equivalencies and truth tables for Equations 1
and 2.

51

Example: Apply DeMorgan’s theorems to the expressions

Sol.

]

Example: Apply DeMorgan’s theorems to the expressions

Sol.

Example: Prove that A+AB = A
Sol.
 A+AB = A (1+B)
 = A . 1 = A

52

Example: Prove that 𝐴 + �̅�𝐵 = 𝐴 + 𝐵

Sol.
 𝐴 + �̅�𝐵 = (𝐴 + 𝐴𝐵) + �̅�𝐵
 = 𝐴 + 𝐵(𝐴 + �̅�)

 = 𝐴 + 𝐵. 1

 = 𝐴 + 𝐵

Example: Apply DeMorgan’s theorems to each expression:

Sol.

Example: Prove that (𝐴 + 𝐵)(𝐴 + 𝐶) = 𝐴 + 𝐵𝐶

Sol.
 (A+B)(A+C) = AA + AC + AB + BC
 = A + AC + AB + BC

 = A + (1+C) + AB + BC

 = A.1 + AB + BC

 = A + AB + BC

 = 𝐴(1 + 𝐵) + 𝐵𝐶

 = A.1 + BC

 = A + BC

53

H.W.:

Apply DeMorgan’s theorems to the following expressions:

1. 2. 3.

2. Apply DeMorgan’s theorems to the expression

4.5 Logic Simplification Using Boolean Algebra
A logic expression can be reduced to its simplest form or changed to a more
convenient form to implement the expression most efficiently using Boolean
algebra.

Example: Using Boolean algebra techniques, simplify this expression:
000000000AB + A(B + C) + B(B + C)
Sol.
 AB + AB + AC + BB + BC distributive law to the second and third terms
 AB + AB + AC + B + BC (BB = B) rule 7
 AB + AC + B + BC (AB + AB = AB) rule 5
 AB + AC + B (B + BC = B) rule 10
 B + AC (AB + B = B) rule 10

The figure below shows that the simplification process significantly reduced
the number of logic gates required to implement the expression. Part (a) shows
that 5 gates are required to implement the expression in its original form;
however, only 2 gates are needed for the simplified expression, shown in part
(b). It is important to realize that these two gate circuits are equivalent.

54

Example: Simplify the following Boolean expression:

𝐴𝐵 + 𝐴𝐶 + �̅�𝐵𝐶

Sol.

(𝐴𝐵)(𝐴𝐶) + �̅�𝐵𝐶 DeMorgan’s theorem

(�̅� + 𝐵)(�̅� + 𝐶̅) + �̅�𝐵𝐶 DeMorgan’s theorem

�̅��̅� + �̅�𝐶̅ + �̅�𝐵 + 𝐵𝐶̅ + �̅�𝐵𝐶 distributive law to the two terms

�̅�𝐵 + �̅�𝐵𝐶 = �̅�𝐵(1 + 𝐶) = �̅�𝐵 rule 7 (�̅��̅� = �̅�) = A) to the first term

�̅� + �̅�𝐶̅ + �̅�𝐵 + 𝐵𝐶̅ rule 10 to the third and last terms.

�̅� + �̅�𝐶̅ = �̅�(1 + 𝐶̅) = �̅� rule 10 to the first and second terms

�̅� + �̅�𝐵 + 𝐵𝐶̅

�̅� + �̅�𝐵 = �̅�(1 + 𝐵) = �̅� rule 10 to the first and second terms.

�̅� + 𝐵𝐶̅

H.W.:

4.6 Boolean Expressions For Truth Table

All Boolean expressions, regardless of their form, can be converted into either
of two standard forms: the sum-of-products form or the product-of-sums form.
Standardization makes the evaluation, simplification, and implementation of
Boolean expressions much more systematic and easier.

4.6.1 The Sum-of-Products (SOP) Form (Minterm)

This form is sometimes called "minterm". A product term that contains each
of the n-variables factors in either complemented or uncomplemented form
for output digits "1" only, is called SOP. For example for the truth table below:

55

The Logical SOP expression for the output digit "1" is written as"

𝐹 = �̅�𝐵𝐶̅ + �̅�𝐵�̅� + �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

This function com be put in another form such as:

 𝐹 = ∑ 0, 2,3,6,7 Since F= 1 in rows 0, 2,3,6,7 only.

The second form is called the Canonical Sum of Products (Canonical SOP).

4.6.2 The Product-of-Sum (POS) Form (Maxterm)

A Logical equation can also be expressed as a product of sum (POS) form
(sometimes this method is called "Maxterm". This is done by considering the
combination for F=0 (output = 0). So for the above example from the truth
table F=0 is in rows 1, 4, 5 hence:

𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

𝐹(𝐴, 𝐵, 𝐶) = 𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

 = �̅�𝐵𝐶 ∙ 𝐴𝐵𝐶̅ ∙ 𝐴𝐵𝐶

 = �̿� + 𝐵 + 𝐶̅ ∙ �̅� + 𝐵 + 𝐶̿ ∙ �̅� + 𝐵 + 𝐶̅

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅) ∙ �̅� + 𝐵 + 𝐶̿ ∙ �̅� + 𝐵 + 𝐶̅

This is POS form. POS form can be expressed as:

 𝐹 = 1, 4, 5

This form is called the Canonical Product of Sum (Canonical POS).

Input Output
A B C F
0 0 0 1 �̅�𝐵�̅�
0 0 1 0 �̅�𝐵𝐶
0 1 0 1 �̅�𝐵𝐶̅
0 1 1 1 �̅�𝐵𝐶
1 0 0 0 𝐴𝐵𝐶̅
1 0 1 0 𝐴𝐵𝐶
1 1 0 1 𝐴𝐵𝐶̅
1 1 1 1 𝐴𝐵𝐶

56

Example: Put F in SOP and POS form and simplifying it:

Sol.

𝑆𝑂𝑃: 𝐹(𝐴, 𝐵) = 0,1,3

 = �̅�𝐵 + �̅�𝐵 + 𝐴𝐵

 = �̅� (𝐵 + 𝐵) + 𝐴𝐵 = �̅� + 𝐴𝐵

 𝐹(𝐴, 𝐵) = �̅� + 𝐵

 𝑃𝑂𝑆: 𝐹(𝐴, 𝐵) = ∏ 2

 𝐹(𝐴, 𝐵) = �̅� + 𝐵

Example: Put in canonical SOP form

 𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵𝐶 + �̅�𝐵𝐶 + 𝐴𝐵𝐶

Sol.

 𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵𝐶 + �̅�𝐵𝐶 + 𝐴𝐵𝐶

 101 011 111

 𝐹(𝐴, 𝐵, 𝐶) = ∑ 3, 5, 7

Example: Put in canonical POS form and draw the truth table, then determine
canonical SOP and SOP form

 𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅)(𝐴 + 𝐵 + 𝐶)(�̅� + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶)

Sol.

 𝐹(𝐴, 𝐵, 𝐶) = 001 010 111 110

 M1 M2 M3 M4

A B F
0 0 1
0 1 1
1 0 0
1 1 1

57

 𝐹(𝐴, 𝐵, 𝐶) = ∏ 1,2,6,7

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

 𝐹(𝐴, 𝐵, 𝐶) = ∑ 0,3,4,5

 𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶̅ + �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

Example: Represent F1, F2 in SOP & POS forms then simplified F1 and F2
using Boolean algebra.

A B C F1 F2
0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Sol.

In SOP:

 𝐹 (𝐴, 𝐵, 𝐶) = ∑ 1,2,3,5,6,7

 = �̅�𝐵𝐶 + �̅�𝐵�̅� + �̅�𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

 = �̅�(𝐵𝐶 + 𝐵�̅� + 𝐵𝐶) + 𝐴(𝐵𝐶 + 𝐵�̅� + 𝐵𝐶)

 = �̅�[𝐵𝐶 + 𝐵(𝐶̅ + 𝐶)] + 𝐴[𝐵𝐶 + 𝐵(𝐶̅ + 𝐶)]

 = �̅�(𝐵𝐶 + 𝐵) + 𝐴(𝐵𝐶 + 𝐵)

58

 = (�̅� + 𝐴) ∙ (𝐵𝐶 + 𝐵) = 𝐵𝐶 + 𝐵

 𝐹 (𝐴, 𝐵, 𝐶) = 𝐵 + 𝐶

 In POS:

 𝐹(𝐴, 𝐵, 𝐶) = ∏ 0,4

 = (𝐴 + 𝐵 + 𝐶) ∙ (�̅� + 𝐵 + 𝐶)

 = 𝐴�̅� + 𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵𝐵 + 𝐵𝐶 + 𝐶�̅� + 𝐶𝐵 + 𝐶𝐶

 = 𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵 + 𝐵𝐶 + �̅�𝐶 + 𝐵𝐶 + 𝐶

 = 𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵(1 + 𝐶) + �̅�𝐶 + 𝐶(1 + 𝐵)

 = 𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵 + �̅�𝐶 + 𝐶

 = 𝐵(𝐴 + �̅�) + 𝐶(𝐴 + �̅�) + 𝐵 + 𝐶

 = 𝐵 + 𝐶 + 𝐵 + 𝐶

 𝐹 (𝐴, 𝐵, 𝐶) = 𝐵 + 𝐶

H.W.: Solution for F2

4.6.3 Converting SOP to POS and Vice Versa

The binary values of the product terms in a given SOP expression aren't
present in the equivalent POS expression. Therefore to convert from standard
SOP to standard POS the following steps may be used:

Step 1: Evaluate each product term in the SOP expression that determines the
binary numbers representing the product term.

Step 2: Determine all the binary numbers not included in the evaluation in
step 1.

Step 3: Write the equivalent sum term for each binary number from step 2 and
express it in POS form.

Note: A Standard SOP expression is one in which all the variables in the
domain appear in each term of the expression. If any variable is missing from

59

any term, we must add these missing variables to that term, by multiplying the
term by the variables missing.

For example, if variable B is missing from the term AC, we must multiply this
term AC, by 𝐵 + 𝐵 to make the expression standard SOP.

 𝐴𝐶(𝐵 + 𝐵)

Note: using a similar procedure explained above (steps 1, 2, and 3) we can
convert from standard POS to standard SOP. If there is missing any variable
from any term, we must add the missing variable multiplied by its complement
to that term.

For example if variable A is missing from the term (𝐵 + 𝐶̅) we must add 𝐴�̅�

 [(𝐵 + 𝐶̅) + 𝐴�̅�]

 = (𝐵 + 𝐶̅ + 𝐴)(𝐵 + 𝐶̅ + �̅�)

Example: Put in canonical POS form and draw the truth table, then
determine canonical SOP and SOP form

 𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶

Sol.

 1st method

 𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶

 = 𝐵(𝐴 + �̅�)(𝐶̅ + 𝐶) + 𝐴𝐶(𝐵 + 𝐵)

 = 𝐵(𝐴𝐶 + 𝐴𝐶̅ + �̅�𝐶 + �̅�𝐶̅) + 𝐴𝐵𝐶 + 𝐴𝐵𝐶

 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + �̅�𝐵𝐶 + �̅�𝐵�̅� + 𝐴𝐵𝐶 + 𝐴𝐵𝐶

 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + �̅�𝐵𝐶 + �̅�𝐵�̅� + 𝐴𝐵𝐶

 111 110 011 010 101

 ∴ 𝐹(𝐴, 𝐵, 𝐶) = ∑ 2,3,5,6,7

 ∴ 𝐹(𝐴, 𝐵, 𝐶) = ∏ 0,1,4

 𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶)

60

2nd method:

 𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶

 ∴ 𝐹(𝐴, 𝐵, 𝐶) = ∑ 2,3,5,6,7

 ∴ 𝐹(𝐴, 𝐵, 𝐶) = ∏ 0,1,4

 𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶)

H.W.: Convert the POS form to SOP form and find these canonical:

 𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵)(�̅� + 𝐶)(𝐴 + 𝐵 + 𝐶)

4.7 The Karnaugh Map (K-map)

 A K- map provides a systematic method for simplifying Boolean
expressions and, if properly used, will produce the simplest SOP or POS
expression. As you have seen, the effectiveness of algebraic simplification
depends on your familiarity with all the laws, rules, and theorems of Boolean
algebra and on your ability to apply them. The K-map is an array of cells in
which each cell represents a binary value of the input variables.

 The cells are arranged in a way so that simplification of a given
expression is simply a matter of properly grouping the cells. The K-maps can
be used for expressions with two, three, four, and five variables, but we will
discuss only 2, 3, and 4 variables. The number of cells in a K-map, as well as
the number of rows in a truth table.

A B C AC F= B+AC
0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

61

4.7.1 The 2-variebles K - map

1.
 𝐹(𝐴, 𝐵) = 𝐵 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵) = 𝐵 𝑃𝑂𝑆

2.
 𝐹(𝐴, 𝐵) = 𝐵 + 𝐴 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵) = 𝐴 + 𝐵 𝑃𝑂𝑆

For 2 input variables, the
number of cells is 22 = 4 cells

For 3 input variables, the
number of cells is 23 = 8 cells

And for 4 input variables, the
number of cells is 24 = 16 cells

62

3.
 𝐹(𝐴, 𝐵) = 1

4.7.2 The 3-variebles K - map

1. 2.

4.7.3 The 4-variebles K – map

1. 2.

 𝐹(𝐴, 𝐵, 𝐶) = 𝐶̅ + 𝐵 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐶̅ 𝑃𝑂𝑆

𝐹(𝐴, 𝐵, 𝐶) = 𝐵 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵, 𝐶) = 𝐵 𝑃𝑂𝑆

𝐹(𝐴, 𝐵) = 𝐵 𝑆𝑂𝑃

𝐹(𝐴, 𝐵) = 𝐵 𝑃𝑂𝑆
𝐹(𝐴, 𝐵) = 𝐵𝐷 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵) = (𝐵) ∙ (𝐷) 𝑃𝑂𝑆

63

 3.

 𝐹(𝐴, 𝐵, 𝐶) = 𝐴 + 𝐶̅ + 𝐵 + 𝐶̅ 𝑆𝑂𝑃

 𝐹(𝐴, 𝐵, 𝐶) = 𝐴 + 𝐶̅ + 𝐵 + 𝐶̅ 𝑃𝑂𝑆

Note:

1. Number of 1's or 0's in one group must be 1, 2, 4, 8, and 16.
2. We must take maximum number of 1's or 0's in one group.

Example: Simplify the following SOP expression on a Karnaugh map:

 𝐹 = �̅�𝐵𝐶̅𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐶̅𝐷 + �̅�𝐶𝐷 + 𝐴𝐵𝐶𝐷

Sol.

 𝐹 = 𝐵𝐷 + �̅�𝐶𝐷

64

Example: Determine the simply expression by the truth table below using
Karnaugh map method.

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Sol.

 𝐹 = 𝐴𝐵 + 𝐵𝐶̅

HW: Implement the Logic function specified in the above example.

Example: Simplify the following Boolean function in:

(a) SOP form (b) POS form
 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑(0, 1, 2, 5, 8, 9, 10)

65

Sol.

(a) The 1's marked in the map represent all minterm of the function. The cells

marked with 0's represent the Maxterm not included in the function and
therefore the function will be:

 𝐹 = 𝐵 𝐶̅ + 𝐵𝐷 + �̅�𝐶̅𝐷

(b) If the squares marked with 0's are combined we obtain the simplified POS
form or the complement of F:

 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷

Applying DeMorgan's theorem by taking the complement of each side, we
obtain the simplified function in POS form:

 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷

 𝐹 = (𝐴𝐵) ∙ (𝐶𝐷) ∙ (𝐵𝐷)

 𝐹 = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷)

 𝐹 = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷)

Note: To use K-map for simplification a function expressed in POS form,
follow these rules:

1. Take the complement of the function.
2. From the results write "0" in the Squares of POS form. Or convert the

POS to SOP form, then follow the standard rules used to enter the 1's
in the cells of K-map.

66

4.7.4 Don't Care Conditions

 Sometimes a situation arises in which some input variable combinations
are not allowed. For example, recall that in the BCD code, there are six invalid
combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed
states will never occur in an application involving the BCD code, they can be
treated as “don’t care” terms with respect to their effect on the output. That is,
for these “don’t care” terms either a 1 or a 0 may be assigned to the output; it
really does not matter since they will never occur.

 The “don’t care” terms can be used to advantage on the Karnaugh map.
The figure below shows that for each “doesn’t care” term, an X is placed in
the cell. When grouping the 1s, the Xs can be treated as 1s to make a larger
grouping or as 0s if they cannot be used to advantage. The larger a group, the
simpler the resulting term will be.

 The truth table describes a logic function that has a 1 output only when
the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t care” are
used as 1s, the resulting expression for the function is A + BCD, as indicated
in K-map. If the “don’t care” is not used as 1s, the resulting expression is ABC
+ ABCD; so you can see the advantage of using “don’t care” terms to get the
simplest expression.

67

Example: In a 7-segment display, each of the seven segments is activated for
various digits. For example, segment-a is activated for the digits 0, 2, 3, 5, 6,
7, 8, and 9, as illustrated in the figure below. Since each digit can be
represented by a BCD code, derive an SOP expression for segment-a using the
variables ABCD and then minimize the expression using a K - map.

Sol.

The expression for segment-a is:

Each term in the expression represents one of the digits in which
segment-a is used. The Karnaugh map minimization is shown in the
figure below. X’s (don’t care) are entered for those states that do not
occur in the BCD code.

From the K - map, the minimized expression for segment-a is:

