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Chapter 4 
 Boolean algebra   
 

4.1   Definition  

        Boolean algebra is the mathematics of digital logic in which the values 
of the variables are the truth values true and false, usually denoted 1 and 0, 
respectively.  

            Basic knowledge of Boolean algebra is indispensable to the study and 
analysis of logic circuits. Variable, complement, and literal are terms used in 
Boolean algebra. A variable is a symbol (usually an italic uppercase letter or 
word) used to represent an action, a condition, or data. Any single variable can 
have only a 1 or a 0 value. The complement is the inverse of a variable and is 
indicated by a bar over the variable (overbar). 

There are four connecting symbols used in Boolean algebra: 

1. Equal sign (=): This refers to the sign of equality as in mathematics. 

2. Multiplication sign (·): It refers to the AND operation. 

3. Plus sign (+): This refers to the OR operation. 

4. Inversion sign (‘) or (−): This operation performs a complement of the input 
given to the logic gate. 

 

4.2 Laws of Boolean Algebra 
 

The basic laws of Boolean algebra—the commutative laws for addition and 
multiplication, the associative laws for addition and multiplication, and the 
distributive law—are the same as in ordinary algebra. Each of the laws is 
illustrated with two or three variables, but the number of variables is not 
limited to this. 
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4.2.1    Commutative Laws 

        The commutative laws of addition and multiplication for two variables 
are written as: 
 

                A + B = B + A                                               AB = BA 

 
 

  
 

4.2.2    Associative Laws 

        This law states that when ORing more than two variables, the result is 
the same regardless of the grouping of the variables. The figure below 
illustrates this law as applied to 2-input OR gates. The associative law of 
addition is written as follows for 3 variables: 
 

 

 A + (B + C) = (A + B) + C 

 

 

        This law states that it is no difference in the order in which the variables 
are grouped when ANDing more than two variables. The figure below 
illustrates this law as applied to 2-input AND gates. The associative law of 
multiplication is written as follows for 3 variables: 

 

 A (BC) = (AB) C 

 

 

4.2.3    Distributive Law 

        The distributive law is written for three variables as follows: 

 
 A (B + C) = AB + AC 
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4.3 Rules of Boolean Algebra 
 

The table below lists 12 basic rules that are useful in manipulating and 
simplifying Boolean expressions.  A, B, or C can represent a single variable or 
a combination of variables. 

 

 
 

 
 

 

 

    
 

Rule 1: A variable ORed with 0 is always equal to the variable. If the input 
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the 
output is 0, which is also equal to A. 

   

 

 
 

 

 

Rule 2: A variable ORed with 1 is always equal to 1. A 1 on an input to an 
OR gate produces a 1 on the output, regardless of the value of the variable on 
the other input. 
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Rule 3: A variable ANDed with 0 is always equal to 0. Any time one input to 
an AND gate is 0, the output is 0, regardless of the value of the variable on the 
other input. 

   
 

 

 

 

 

 

Rule 4: A variable ANDed with 1 is always equal to the variable. If A is 0, 
the output of the AND gate is 0. If A is 1, the output of the AND gate is 1 
because both inputs are now 1s.   

   

 

 

 
Rule 5: A variable ORed with itself is always equal to the variable. If A is 0, 
then 0 + 0 = 0; and if A is 1, then 1 + 1 = 1. 

 

 
  

 

 

 

 

 

 

Rule 6: A variable ORed with its complement is always equal to 1. If A is 0, 
then 0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. 
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Rule 7: A variable ANDed with itself is always equal to the variable. If              
A = 0, then 0 #0 = 0; and if A = 1, then 1 #1 = 1. 

   
 

 

 

 

Rule 8: A variable ANDed with its complement is always equal to 0. Either 
A or A will always be 0; and when a 0 is applied to the input of an AND gate, 
the output will be 0 also. 

 

 
 

 

  

Rule 9: The double complement of a variable is always equal to the variable. 
If you start with the variable A and complement (invert) it once, you get A. If 
you then take A and complement (invert) it, you get A, which is the original 
variable. 

  

 

 
 

Rule 10: This rule can be proved by applying the distributive law, rule 2, 
and rule 4 as follows: 

𝐴 + 𝐴𝐵 = 𝐴 . 1 + 𝐴𝐵 = 𝐴 (1 +  𝐵)    Factoring (distributive law) 

=  𝐴 . 1   Rule 2: (1 +  𝐵)  =  1  

=  𝐴        Rule 4: 𝐴 . 1 = 𝐴 

The proof is shown in below, which shows the truth table and the resulting 
logic circuit simplification.  
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Rule 11:   This rule can be proved as follows: 

𝐴 + 𝐴𝐵 =  (𝐴 +  𝐴𝐵)  +  𝐴𝐵      Rule 10: A = A + AB 

=(𝐴𝐴 +  𝐴𝐵) + 𝐴𝐵     Rule 7: A = AA 

=AA +  AB +  AA +  AB    Rule 8: adding AA  =  0 

= (A + A)(A +  B)    Factoring 

= 1 . (A +  B)     Rule 6: A + A = 1 

= A + B    Rule 4: drop the 1 

The proof is shown in the table below, which shows the truth table and the 
resulting logic circuit simplification. 
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Rule 12: This rule can be proved as follows: 

(A + B)(A + C) = AA + AC + AB + BC     Distributive law 

= A + AC + AB + BC     Rule 7: AA = A 

= A(1 +  C)  +  AB +  BC   Factoring (distributive law) 

= A .1 + AB + BC    Rule 2: 1 + C = 1 

= A(1 +  B) +  BC  Factoring (distributive law) 

= A . 1 +  BC             Rule 2: 1 + B = 1 

= A + BC                  Rule 4: A. 1 = A 
 

The proof is shown in the table below, which shows the truth table and the 
resulting logic circuit simplification. 

   

 

 

 

 

 

 

 

 

 

 

 

H.W: 

1. Apply the associative law of addition to the expression A + (B + C + D). 

2. Apply the distributive law to the expression A(B +  C +  D). 
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4.4 DeMorgan’s Theorems 
 

DeMorgan, a mathematician, proposed two theorems that are an important 
part of Boolean algebra. In practical terms, DeMorgan’s theorems provide 
mathematical verification of the equivalency of the NAND and negative-OR 
gates and the equivalency of the NOR and negative-AND gates. 

 

4.4.1  DeMorgan’s first theorem  
 

The complement of a product of variables is equal to the sum of the 
complements of the variables. 

Stated another way, 

The complement of two or more ANDed variables is equivalent to the OR of 
the complements of the individual variables. 

The formula for expressing this theorem for two variables is 

 

𝑋𝑌 =  𝑋 + 𝑌     ………   (1) 

 

4.4.2 DeMorgan’s second theorem 
 

The complement of a sum of variables is equal to the product of the 
complements of the variables. 

Stated another way, 

The complement of two or more ORed variables is equivalent to the AND of 
the 

complements of the individual variables. 

The formula for expressing this theorem for two variables is 

 

𝑋 + 𝑌 = 𝑋𝑌    ………   (2) 

Figure below shows the gate equivalencies and truth tables for Equations 1 
and 2. 
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Example:  Apply DeMorgan’s theorems to the expressions  

Sol. 

 
] 

 

Example:  Apply DeMorgan’s theorems to the expressions 

Sol. 

 

 

 

Example:  Prove that   A+AB = A  
Sol.  
         A+AB = A (1+B) 
                     = A . 1 = A 



52 
 

 

 

Example:  Prove that   𝐴 + �̅�𝐵 = 𝐴 + 𝐵  

Sol.            
                 𝐴 + �̅�𝐵 = (𝐴 + 𝐴𝐵) + �̅�𝐵 
                                 = 𝐴 + 𝐵(𝐴 + �̅�) 

                                 = 𝐴 + 𝐵. 1 

                                 = 𝐴 + 𝐵 
 

 

Example:  Apply DeMorgan’s theorems to each expression: 

 

 
 
 
Sol. 
 

 

 

 

Example:  Prove that   (𝐴 + 𝐵)(𝐴 + 𝐶)  =  𝐴 + 𝐵𝐶  
 
Sol. 
               (A+B)(A+C)  = AA + AC + AB + BC 
                                     = A + AC + AB + BC  

            = A + (1+C) + AB + BC 

                                     = A.1 + AB + BC 

                                     = A + AB + BC 

            = 𝐴(1 + 𝐵)  +  𝐵𝐶           

                                     = A.1 + BC 

            = A + BC 
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H.W.: 
 

Apply DeMorgan’s theorems to the following expressions: 

1.                                             2.                                3. 

2. Apply DeMorgan’s theorems to the expression    
 

4.5 Logic Simplification Using Boolean Algebra 
A logic expression can be reduced to its simplest form or changed to a more 
convenient form to implement the expression most efficiently using Boolean 
algebra. 

 

Example: Using Boolean algebra techniques, simplify this expression:                                           
000000000AB + A(B + C) + B(B + C)  
Sol. 
       AB + AB + AC + BB + BC   distributive law to the second and third terms 
       AB + AB + AC + B + BC     (BB = B) rule 7 
       AB + AC + B + BC    (AB + AB = AB)  rule 5 
       AB + AC + B    (B + BC = B) rule 10 
       B + AC   (AB + B = B)   rule 10 
 

The figure below shows that the simplification process significantly reduced 
the number of logic gates required to implement the expression. Part (a) shows 
that 5 gates are required to implement the expression in its original form; 
however, only 2 gates are needed for the simplified expression, shown in part 
(b). It is important to realize that these two gate circuits are equivalent.   
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Example:   Simplify the following Boolean expression:  

𝐴𝐵 + 𝐴𝐶 + �̅�𝐵𝐶 

Sol. 

(𝐴𝐵)(𝐴𝐶) + �̅�𝐵𝐶     DeMorgan’s theorem 

(�̅� + 𝐵)(�̅� + 𝐶̅) + �̅�𝐵𝐶      DeMorgan’s theorem 

�̅��̅� + �̅�𝐶̅ +  �̅�𝐵 + 𝐵𝐶̅ + �̅�𝐵𝐶      distributive law to the two terms 

�̅�𝐵 + �̅�𝐵𝐶 = �̅�𝐵(1 + 𝐶) =  �̅�𝐵      rule 7 (�̅��̅� = �̅�) = A) to the first term  

�̅� + �̅�𝐶̅ + �̅�𝐵 + 𝐵𝐶̅      rule 10 to the third and last terms. 

�̅� + �̅�𝐶̅ = �̅�(1 + 𝐶̅) =  �̅�      rule 10 to the first and second terms 

�̅� + �̅�𝐵 + 𝐵𝐶̅       

�̅� + �̅�𝐵 = �̅�(1 + 𝐵) = �̅�       rule 10  to the first and second terms. 

�̅� + 𝐵𝐶̅   
     
 

H.W.: 
 
 
 
 
 
 
 

4.6 Boolean Expressions For Truth Table 

All Boolean expressions, regardless of their form, can be converted into either 
of two standard forms: the sum-of-products form or the product-of-sums form. 
Standardization makes the evaluation, simplification, and implementation of 
Boolean expressions much more systematic and easier. 
 

4.6.1 The Sum-of-Products (SOP) Form (Minterm) 

This form is sometimes called "minterm". A product term that contains each 
of the n-variables factors in either complemented or uncomplemented form 
for output digits "1" only, is called SOP. For example for the truth table below: 
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The Logical SOP expression for the output digit "1" is written as" 

𝐹 = �̅�𝐵𝐶̅ + �̅�𝐵�̅� + �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶                 

This function com be put in another form such as: 

                         𝐹 = ∑ 0, 2,3,6,7                   Since F= 1 in rows  0, 2,3,6,7 only. 

The second form is called the Canonical Sum of Products (Canonical SOP). 

             

4.6.2 The Product-of-Sum (POS) Form (Maxterm) 

A Logical equation can also be expressed as a product of sum (POS) form 
(sometimes this method is called "Maxterm". This is done by considering the 
combination for F=0 (output = 0). So for the above example from the truth 
table F=0 is in rows 1, 4, 5 hence: 

𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶  

𝐹(𝐴, 𝐵, 𝐶) = 𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶   

                  = �̅�𝐵𝐶 ∙ 𝐴𝐵𝐶̅ ∙ 𝐴𝐵𝐶 

                    = �̿� + 𝐵 + 𝐶̅ ∙ �̅� + 𝐵 + 𝐶̿ ∙ �̅� + 𝐵 + 𝐶̅  

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅) ∙ �̅� + 𝐵 + 𝐶̿ ∙ �̅� + 𝐵 + 𝐶̅        

This is POS form. POS form can be expressed as: 

   𝐹 = 1, 4, 5  

This form is called the Canonical Product of Sum (Canonical POS).  

Input Output  
A B C F  
0 0 0 1    �̅�𝐵�̅� 
0 0 1 0     �̅�𝐵𝐶 
0 1 0 1     �̅�𝐵𝐶̅ 
0 1 1 1   �̅�𝐵𝐶 
1 0 0 0   𝐴𝐵𝐶̅ 
1 0 1 0   𝐴𝐵𝐶  
1 1 0 1   𝐴𝐵𝐶̅ 
1 1 1 1   𝐴𝐵𝐶 
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Example:   Put F in SOP and POS form and simplifying it:  
 

 

 

 

Sol. 

𝑆𝑂𝑃:   𝐹(𝐴, 𝐵) = 0,1,3                                                                               

                          =  �̅�𝐵  +  �̅�𝐵 + 𝐴𝐵 

                            =  �̅� (𝐵  + 𝐵 ) +  𝐴𝐵 =  �̅� +  𝐴𝐵 

            𝐹(𝐴, 𝐵) =  �̅� + 𝐵         
 

  𝑃𝑂𝑆:  𝐹(𝐴, 𝐵) =  ∏ 2            

            𝐹(𝐴, 𝐵) =  �̅� + 𝐵       
 

 

Example:   Put in canonical SOP form 

                   𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵𝐶 + �̅�𝐵𝐶 + 𝐴𝐵𝐶 

Sol. 

             𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵𝐶 + �̅�𝐵𝐶 + 𝐴𝐵𝐶 

                                        101      011       111 

             𝐹(𝐴, 𝐵, 𝐶) = ∑ 3, 5, 7  
 

Example:   Put in canonical POS form and draw the truth table, then determine 
canonical SOP and SOP form 

                    𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅)(𝐴 + 𝐵 + 𝐶)(�̅� + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶) 

Sol. 

  𝐹(𝐴, 𝐵, 𝐶) =          001              010                 111                110   

                                 M1               M2                 M3               M4 

A B F 
0 0 1 
0 1 1 
1 0 0 
1 1 1 
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  𝐹(𝐴, 𝐵, 𝐶) =    ∏ 1,2,6,7 
 

A B C F 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 0 

            𝐹(𝐴, 𝐵, 𝐶) =    ∑ 0,3,4,5 

           𝐹(𝐴, 𝐵, 𝐶) =    �̅�𝐵𝐶̅ + �̅�𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶 

 

Example:  Represent F1, F2 in SOP & POS forms then simplified F1 and F2 
using Boolean algebra.   
 

A B C F1 F2 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

Sol.  

In SOP: 

       𝐹 (𝐴, 𝐵, 𝐶) = ∑ 1,2,3,5,6,7 

                     =    �̅�𝐵𝐶 + �̅�𝐵�̅� + �̅�𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶 

                     =    �̅�(𝐵𝐶 + 𝐵�̅� + 𝐵𝐶) + 𝐴(𝐵𝐶 + 𝐵�̅� + 𝐵𝐶) 

                      =    �̅�[𝐵𝐶 + 𝐵(𝐶̅ + 𝐶)] + 𝐴[𝐵𝐶 + 𝐵(𝐶̅ + 𝐶)] 

                      =    �̅�(𝐵𝐶 + 𝐵) + 𝐴(𝐵𝐶 + 𝐵) 
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                      =    (�̅� + 𝐴) ∙ (𝐵𝐶 + 𝐵)  =  𝐵𝐶 + 𝐵   

           𝐹 (𝐴, 𝐵, 𝐶) =  𝐵 + 𝐶 

          In POS: 

            𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,4 

                                 =    (𝐴 + 𝐵 + 𝐶) ∙ (�̅� + 𝐵 + 𝐶) 

                                 =    𝐴�̅� + 𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵𝐵 + 𝐵𝐶 + 𝐶�̅� + 𝐶𝐵 + 𝐶𝐶 

                                 =  𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵 + 𝐵𝐶 + �̅�𝐶 + 𝐵𝐶 + 𝐶 

                                 =  𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵(1 + 𝐶) + �̅�𝐶 + 𝐶(1 + 𝐵) 

                                 =  𝐴𝐵 + 𝐴𝐶 + �̅�𝐵 + 𝐵 + �̅�𝐶 + 𝐶 

                                 =  𝐵(𝐴 + �̅�) + 𝐶(𝐴 + �̅�) + 𝐵 + 𝐶 

                                 =  𝐵 + 𝐶 + 𝐵 + 𝐶 

           𝐹 (𝐴, 𝐵, 𝐶) =  𝐵 + 𝐶 

 

H.W.:  Solution for F2 

 

4.6.3 Converting SOP to POS and Vice Versa 

The binary values of the product terms in a given SOP expression aren't 
present in the equivalent POS expression. Therefore to convert from standard 
SOP to standard POS the following steps may be used: 

Step 1: Evaluate each product term in the SOP expression that determines the 
binary numbers representing the product term. 

Step 2: Determine all the binary numbers not included in the evaluation in    
step 1.  

Step 3: Write the equivalent sum term for each binary number from step 2 and 
express it in POS form. 

Note: A Standard SOP expression is one in which all the variables in the 
domain appear in each term of the expression. If any variable is missing from 
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any term, we must add these missing variables to that term, by multiplying the 
term by the variables missing. 

For example, if variable B is missing from the term AC, we must multiply this 
term AC, by 𝐵 + 𝐵 to make the expression standard SOP. 

                               𝐴𝐶(𝐵 + 𝐵) 

Note: using a similar procedure explained above (steps 1, 2, and 3) we can 
convert from standard POS to standard SOP. If there is missing any variable 
from any term, we must add the missing variable multiplied by its complement 
to that term.    

For example if variable A is missing from the term (𝐵 + 𝐶̅) we must add 𝐴�̅�  

                             [(𝐵 + 𝐶̅) + 𝐴�̅�] 

                           = (𝐵 + 𝐶̅ + 𝐴)(𝐵 + 𝐶̅ + �̅�) 
 

Example:   Put in canonical POS form and draw the truth table, then 
determine canonical SOP and SOP form 

                    𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶 

Sol. 

 1st method 

  𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶            

                    = 𝐵(𝐴 + �̅�)(𝐶̅ + 𝐶) + 𝐴𝐶(𝐵 + 𝐵) 

                    = 𝐵(𝐴𝐶 + 𝐴𝐶̅ + �̅�𝐶 + �̅�𝐶̅) + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 

                    = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + �̅�𝐵𝐶 + �̅�𝐵�̅� + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 

                    = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + �̅�𝐵𝐶 + �̅�𝐵�̅� + 𝐴𝐵𝐶  

                           111      110       011      010       101 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∑ 2,3,5,6,7 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,1,4 

     𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶)            
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2nd method: 

    𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶            
 

 

 

 

 

 
 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∑ 2,3,5,6,7 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,1,4 

    𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶)            

 

H.W.:  Convert the POS form to SOP form and find these canonical: 

            𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵)(�̅� + 𝐶)(𝐴 + 𝐵 + 𝐶)            

 

4.7 The Karnaugh Map (K-map) 

        A K- map provides a systematic method for simplifying Boolean 
expressions and, if properly used, will produce the simplest SOP or POS 
expression. As you have seen, the effectiveness of algebraic simplification 
depends on your familiarity with all the laws, rules, and theorems of Boolean 
algebra and on your ability to apply them. The K-map is an array of cells in 
which each cell represents a binary value of the input variables.  

        The cells are arranged in a way so that simplification of a given 
expression is simply a matter of properly grouping the cells. The K-maps can 
be used for expressions with two, three, four, and five variables, but we will 
discuss only 2, 3, and 4 variables. The number of cells in a K-map, as well as 
the number of rows in a truth table. 
 

A B C AC F= B+AC 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 0 0 
1 0 1 1 1 
1 1 0 0 1 
1 1 1 1 1 
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4.7.1 The 2-variebles K - map  

1.                                                                            
         𝐹(𝐴, 𝐵) =  𝐵             𝑆𝑂𝑃             

         𝐹(𝐴, 𝐵) =  𝐵             𝑃𝑂𝑆                                             

 

2.     
         𝐹(𝐴, 𝐵) = 𝐵 +  𝐴     𝑆𝑂𝑃 

         𝐹(𝐴, 𝐵) = 𝐴 + 𝐵      𝑃𝑂𝑆  

 

For 2 input variables, the 
number of cells is 22 = 4 cells 

For 3 input variables, the 
number of cells is 23 = 8 cells 

And for 4 input variables, the 
number of cells is 24 = 16 cells 
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3.   
         𝐹(𝐴, 𝐵) = 1 

 

 

 
 

 

4.7.2 The 3-variebles K - map  
 

 
1.                                                               2.    

  

    

 

 

 
 

 

 
 

4.7.3  The 4-variebles K – map 

1.                                                                2. 

         

 

 
 
 
 
 

 

   𝐹(𝐴, 𝐵, 𝐶) =  𝐶̅ + 𝐵       𝑆𝑂𝑃   

   𝐹(𝐴, 𝐵, 𝐶) =  𝐵 + 𝐶̅       𝑃𝑂𝑆  

 

𝐹(𝐴, 𝐵, 𝐶) =  𝐵        𝑆𝑂𝑃   

     𝐹(𝐴, 𝐵, 𝐶) =  𝐵        𝑃𝑂𝑆 

𝐹(𝐴, 𝐵) =  𝐵             𝑆𝑂𝑃   

𝐹(𝐴, 𝐵) =  𝐵             𝑃𝑂𝑆  
𝐹(𝐴, 𝐵) =  𝐵𝐷               𝑆𝑂𝑃   

        𝐹(𝐴, 𝐵) = (𝐵) ∙ (𝐷)      𝑃𝑂𝑆 
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     3. 

          𝐹(𝐴, 𝐵, 𝐶) =  𝐴 + 𝐶̅ + 𝐵 + 𝐶̅          𝑆𝑂𝑃 

          𝐹(𝐴, 𝐵, 𝐶) =  𝐴 + 𝐶̅ + 𝐵 + 𝐶̅         𝑃𝑂𝑆 

 

 

 

 

 

 

 

Note: 

1. Number of 1's or 0's in one group must be 1, 2, 4, 8, and 16.  
2. We must take maximum number of 1's or 0's in one group. 

   

Example:  Simplify the following SOP expression on a Karnaugh map: 

                 𝐹 =  �̅�𝐵𝐶̅𝐷  +  𝐴𝐵𝐶𝐷  +  𝐴𝐵𝐶̅𝐷 +  �̅�𝐶𝐷 +  𝐴𝐵𝐶𝐷 

 

Sol. 

                    𝐹 = 𝐵𝐷 + �̅�𝐶𝐷 
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Example:  Determine the simply expression by the truth table below using 
Karnaugh map method. 

A B C F 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

Sol. 

                 𝐹 = 𝐴𝐵 + 𝐵𝐶̅ 

  

 

 

 

 

 

 

HW: Implement the Logic function specified in the above example. 

 

Example:  Simplify the following Boolean function in: 

(a)   SOP form     (b)   POS form  
                𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑(0, 1, 2, 5, 8, 9, 10)     
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Sol. 

 

 

 

 

 

 
(a) The 1's marked in the map represent all minterm of the function. The cells 

marked with 0's represent the Maxterm not included in the function and 
therefore the function will be:  

 

 𝐹 =  𝐵 𝐶̅ + 𝐵𝐷 + �̅�𝐶̅𝐷 

(b) If the squares marked with 0's are combined we obtain the simplified POS 
form or the complement of F: 

 

 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷 

Applying DeMorgan's theorem by taking the complement of each side, we 
obtain the simplified function in POS form: 

 𝐹 = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷 

 𝐹 = (𝐴𝐵) ∙ (𝐶𝐷) ∙ (𝐵𝐷) 

 𝐹 = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷) 

                     𝐹 = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷) 
 

Note: To use K-map for simplification a function expressed in POS form, 
follow these rules: 

1. Take the complement of the function. 
2. From the results write "0" in the Squares of POS form. Or convert the 

POS to SOP form, then follow the standard rules used to enter the 1's 
in the cells of K-map.  
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4.7.4 Don't Care Conditions 

        Sometimes a situation arises in which some input variable combinations 
are not allowed. For example, recall that in the BCD code, there are six invalid 
combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed 
states will never occur in an application involving the BCD code, they can be 
treated as “don’t care” terms with respect to their effect on the output. That is, 
for these “don’t care” terms either a 1 or a 0 may be assigned to the output; it 
really does not matter since they will never occur.  

        The “don’t care” terms can be used to advantage on the Karnaugh map. 
The figure below shows that for each “doesn’t care” term, an X is placed in 
the cell. When grouping the 1s, the Xs can be treated as 1s to make a larger 
grouping or as 0s if they cannot be used to advantage. The larger a group, the 
simpler the resulting term will be. 

 

 

 

 

 

 

 

 

 
 
        The truth table describes a logic function that has a 1 output only when 
the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t care” are 
used as 1s, the resulting expression for the function is A + BCD, as indicated 
in K-map. If the “don’t care” is not used as 1s, the resulting expression is ABC 
+ ABCD; so you can see the advantage of using “don’t care” terms to get the 
simplest expression. 
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Example:  In a 7-segment display, each of the seven segments is activated for 
various digits. For example, segment-a is activated for the digits 0, 2, 3, 5, 6, 
7, 8, and 9, as illustrated in the figure below. Since each digit can be 
represented by a BCD code, derive an SOP expression for segment-a using the 
variables ABCD and then minimize the expression using a K - map.                  

       

 

 

      

 

Sol. 

The expression for segment-a is: 

 

 

Each term in the expression represents one of the digits in which 
segment-a is used. The Karnaugh map minimization is shown in the 
figure below. X’s (don’t care) are entered for those states that do not 
occur in the BCD code. 
 

  

 

 

 

 

 

 

From the K - map, the minimized expression for segment-a is: 

   


