1. Algorithm Design Methods:

1.1. Divide-and-Conquer Method:

In the divide-and-conquer approach to solve a large problem, we divide it into some number of smaller problems; solve each of these; and combine these solutions to obtain the solution to the original problem. Often, the generated sub-problems are simply smaller instances of the original problem and may be solved using the divide-and-conquer strategy recursively. The divide-and-conquer approach is a top-down approach. That is, the solution to a top-level instance of a problem is obtained by going down and obtaining solutions to smaller instances.

The divide-and-conquer design strategy involves the following steps:

- 1. Divide an instance of a problem into one or more smaller instances.
- 2. Conquer (solve) each of the smaller instances. Unless a smaller instance is sufficiently small, use recursion to do this.
- 3. If necessary, combine the solutions to the smaller instances to obtain the solution to the original instance.

The reason we say "if necessary" in Step 3 is that in algorithms such as Binary Search the instance is reduced to just one smaller instance, so there is no need to combine solutions.

The abstracted procedure for the divide-and-conquer method as follow:

Procedure DandC(p);

begin

If small (p) then solve (p);

Else begin

Divide p into smaller instance $p_1, p_2, p_3, ..., p_k$,

Apply DandC to each of these subproblems;

Combine(DandC(p₁), DandC(p₂), DandC(p₃), ..., DandC(p_k));

end;

end;

If the size of the problem p is n and the sizes of sub-problems p_1 , p_2 , p_3 , ..., p_k , are n_1 , n_2 , n_3 , ..., n_k respectively, then the time complexity for the divide-and-conquer strategy is described as follow:

$$T(\mathbf{n}) = \begin{cases} g(\mathbf{n}) & \text{if } \mathbf{n} \text{ small} \\ \\ T(\mathbf{n}_1) + T(\mathbf{n}_2) + T(\mathbf{n}_3) + \dots + T(\mathbf{n}_k) + \mathbf{f}(\mathbf{n}) & \text{otherwise} \end{cases}$$

Where T(n): is the execution time of DandC for any inputs with size n.

g(n): the computing time of response for small problem.

f(n): the time of dividing and/or combining the problem p to its sub-problems. EXAMPLES:

1. Binary search:

To locate the element k in sorted list a[1..n]

The idea: To locate the element k in the a[p..q] we locate the k in three sub-list a[p..m-1], a[m..m], and a[m+1..q]. By comparing k with a[m] two of the sub-list will be removed.

Figure 2.1: The steps done by a human when searching with Binary Search. (*Note:x* = 18.)

A recursive version of Binary Search now follows.

Here we design an algorithm for binary search by using divide-and-conquer method.

Function BinSearch(var a:ElemList; p, q:integer; k: Key): integer;

var m: integer;

Begin

```
m := (p + q) \text{ div } 2;
```

If p > q then

BinSearch:= 0;

Else if k = a[m] then BinSearch:= m

Else if k > a[m] then BinSearch:= BinSearch(a, m+1, q, k)

Else BinSearch:=BinSearch(a, p, m-1, k);

End;

Tracing of Algorithm:

Locate the values 101, -14, and 82 in the following sorted list

A[1..9] = (-15, -6, 0, 7, 9, 23, 54, 82, 101)

Locations: 1 2 3 4 5 6 7 8 9

k = 101			k = -14			k = 82		
Р	Q	М	Р	Q	М	р	q	М
1	9	5	1	9	5	1	9	5
6	9	7	1	4	2	6	9	7
8	9	8	1	1	1	8	9	8
9	9	9	2	1				
Found			Not Found			Found		

Algorithm Analysis:

1- Space complexity:

Each activation requires 7 spaces (4 bytes for a, 4 bytes for each p,q,m, return address and BinSearch, and k)

1 st activation	2 nd activation	3 th activation	 m th activation
$n+1/2^{1}$	$n+1/2^{2}$	$n+1/2^{3}$	 n+1/2 ^m

The last comparison is stopped when

 $n + 1 = 2^m$

 $\log_2\left(n+1\right) = \log_2 2^m$

 $m = \log_2 n$

where n: the no. of comparisons, m: the no. of activations

 $S_{\text{BinSearch}}(n) = \Theta(\log_2 n)$

 $S_{\text{BinSearch}}(n) = 7 \log_2 n$

2- Time complexity:

$$T_{\text{BinSearch}}(\mathbf{n}) = \begin{cases} T_{\text{BinSearch}}(1) & \text{if } \mathbf{n} = 1 \\ \\ T_{\text{BinSearch}}(\mathbf{n}/2) + \mathbf{c} & \text{otherwise} \end{cases}$$
$$T_{\text{BinSearch}}(\mathbf{n}) = T_{\text{BinSearch}}(\mathbf{n}/2) + \mathbf{c}$$

Department of Computer Sciences

 $T_{\text{BinSearch}} (n / 2^2) + 2c$

 $= T_{\text{BinSearch}} (n / 2^3) + 3c$ $= T_{\text{BinSearch}} (n / 2^m) + mc$ Suppose $n = {}^{2m}$ $m = \log_2 n$ $= T_{\text{BinSearch}} (n / 2^m) + mc$ $= T_{\text{BinSearch}} (1) + c \log_2 n$ $T_{\text{BinSearch}} (n) = \Theta(\log_2 n)$

=

This the worst case time complexity for the successful search of the binary search algorithm, while the best case time complexity is equal to $\Theta(1)$. Example: Draw the binary search decision tree for a list of 14 elements and then find:

- 1- The maximum, minimum, and average number of comparisons for the successful search.
- 2- The average number of comparisons for the failure search.

binary search decision tree when n=14

Internal node (represent successful state)

External node (represent failure state)

The maximum number of comparisons for the successful search = 4 comparisons.

The minimum number of comparisons for the successful search = 1 comparison.

The average number of comparisons for the successful search

$$= \frac{(1*0) + (2*1) + (4*2) + (7*3)}{1+2+4+7} = \frac{31}{14}$$

The average number of comparisons for the failure search

$$= \frac{(1*3) + (14*4)}{1+14} = \frac{59}{15} = 3.933 \text{ comparisons}$$

The abstract:

The	e successful sear	ches	The failure searches			
Best case	Average case	Worst case	Best case	Average case	Worst case	
Θ(1)	$\Theta(1)$ $\Theta(\log_2 n)$		$\Theta(\log_2 n)$			

