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1. Algorithm Design Methods: 

1.1. Divide-and-Conquer Method: 

In the divide-and-conquer approach  to solve a large problem, we divide 

it into some number of smaller problems; solve each of these; and combine 

these solutions to obtain the solution to the original problem. Often, the 

generated sub-problems are simply smaller instances of the original problem 

and may be solved using the divide-and-conquer strategy recursively. The 

divide-and-conquer approach is a top-down approach. That is, the solution to a 

top-level instance of a problem is obtained by going down and obtaining 

solutions to smaller instances. 

The divide-and-conquer design strategy involves the following steps: 

1. Divide an instance of a problem into one or more smaller instances. 

2. Conquer (solve) each of the smaller instances. Unless a smaller instance is 

sufficiently small, use recursion to do this. 

3. If necessary, combine the solutions to the smaller instances to obtain the 

solution to the original instance. 

The reason we say "if necessary" in Step 3 is that in algorithms such as 

Binary Search the instance is reduced to just one smaller instance, so there is no 

need to combine solutions. 

  The abstracted procedure for the divide-and-conquer method as follow: 

Procedure DandC(p); 

begin 

   If small (p) then  solve (p); 

   Else begin 

               Divide p into smaller instance p1, p2, p3, …, pk,  

              Apply DandC to each of these subproblems; 

                       Combine( DandC(p1), DandC(p2), DandC(p3), …, DandC(pk)); 
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 end; 

end; 

If the size of the problem p is n and the sizes of sub-problems p1, p2, p3, …, pk, are n1, 

n2, n3, …, nk respectively, then the time complexity for the divide-and-conquer 

strategy is described as follow: 

              g(n)    if   n   small 

T(n) =  

              T(n1) + T(n2) + T(n3) + … + T(nk) +  f(n)   otherwise 

 

Where T(n) : is the execution time of DandC for any inputs with size n. 

            g(n): the computing time of response for small problem. 

             f(n): the time of dividing and/or combining the problem p to its sub-problems. 

EXAMPLES: 

1. Binary search: 

To locate the element k in sorted list a[1..n] 

 

 

 

 

 

 

 

 

 

The idea: To locate the element k in the a[p..q] we locate the k in three sub-list 

a[p..m-1] , a[m..m], and a[m+1..q]. By comparing k with a[m] two of the sub-list 

will be removed.  

 

a[p] a[q] 

a[p .. m-1] a[m+1..q] a[m .. m] 

a[m .. m] a[p .. m-1] a[m+1..q] k 

k 
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Here we design an algorithm for binary search by using divide-and-conquer 

method. 

Function BinSearch(var a:ElemList; p, q:integer; k: Key): integer; 

var  m: integer; 

Begin 

    m := (p +q) div 2; 

    If p > q then 

       BinSearch:= 0; 

    Else if k = a[m] then   BinSearch:= m 

   Else if k > a[m] then   BinSearch:= BinSearch(a, m+1, q, k) 

   Else   BinSearch:= BinSearch(a, p, m-1, k); 

End; 

 Tracing of Algorithm: 

Locate the values 101, -14, and 82 in the following sorted list 

A[1..9] = ( -15, -6, 0, 7, 9, 23, 54, 82, 101) 

Locations:  1    2   3   4    5     6    7    8      9 
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Algorithm Analysis: 

1- Space complexity: 

Each activation requires 7 spaces ( 4 bytes for a, 4 bytes for each p,q,m, return 

address and BinSearch, and k) 

1st  activation 2nd  activation 3th activation … mth  activation 

n+1/21 n+1/22 n+1/23 … n+1/2m 

 

The last comparison is stopped when  

n + 1 = 2m 

log2 (n + 1) = log2 2
m 

m = log2 n      

where    n: the no. of comparisons,   m:  the no. of activations 

 SBinSearch (n) =  Θ(log2 n ) 

SBinSearch (n) =  7 log2 n  

 

2- Time complexity: 

                              TBinSearch (1)    if   n =1 

TBinSearch (n) =  

                               TBinSearch (n / 2) + c   otherwise 

TBinSearch (n) = TBinSearch (n / 2) + c 

k = 101 k = -14 k = 82 

P Q M P Q M p q M 

1 9 5 1 9 5 1 9 5 

6 9 7 1 4 2 6 9 7 

8 9 8 1 1 1 8 9 8 

9 9 9 2 1   

Found Found Not Found 
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                 =    TBinSearch (n / 22) + 2c 

               

             =    TBinSearch (n / 23) + 3c 

       =   TBinSearch (n / 2m) + mc 

      Suppose n = 2m 
                        m = log2 n 

        =   TBinSearch (n / 2m) + mc 

        =  TBinSearch (1) + c log2 n 

TBinSearch (n) = Θ(log2 n ) 

This the worst case time complexity for the successful search of the 

binary search algorithm, while the best case time complexity is equal to  Θ(1). 

Example: Draw the binary search decision tree for a list of 14 elements and then find: 

1- The maximum, minimum, and average number of comparisons for the 

successful search. 

2- The average number of comparisons for the failure search. 

 

 

 

 

 

 

 
 
 
 
 
 

binary search decision tree when n= 14 
 

Internal node (represent successful state) 
 
 

7 

3 11 

1 5 9 13 

2 6 4 8 10 12 14 
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External node ( represent failure state) 
 

The  maximum number of comparisons for the successful search = 4 comparisons. 

The  minimum number of comparisons for the successful search = 1 comparison. 

The  average number of comparisons for the successful search  

       (1 * 0) + (2 * 1) + (4 * 2) + (7 * 3)         31 
=                                                            =           = 2.214 comparisons 
                 1 + 2 + 4 + 7                               14 
 

The average number of comparisons for the failure search 
       (1 * 3) + (14 * 4)       59 
=                                   =         = 3.933 comparisons 
             1 + 14                  15 
 
The abstract: 

The successful searches The failure searches 
Best case Average case Worst case Best case Average case Worst case 

Θ(1) Θ(log2 n ) Θ(log2 n ) Θ(log2 n ) 

 
 

 
 


