

Summary of Grammar Types

Grammars use to generate sentences of a language and to determine if a given sentence is in a

language. Formal languages, generated by grammars, provide models for programming

languages (Java, C, etc) as well as natural language important for constructing compilers.

Definition:

Grammar is a finite set of formal rules for generating syntactically correct sentences or

meaningful correct sentences. A Grammar can contain mainly two elements - Terminal (T)

and Non Terminal (N).

Terminal Symbols (T)

It is a portion of the sentence generated by using a grammar. It is denoted by using small

letters, such as a, b, c, d, etc.

Non Terminal Symbols

It takes part in the formation of a sentence, but not part of it. It is denoted by using capital

letters, such as A, B, C, D, etc. It is also called auxiliary symbols.

Productions rules must be in the form:

),,,(PSTNG

Lec. (3)

Computation Theory

Second stage

College of Information Technology

Dept. Software

Productions Non-Terminal

symbols

Start

Symbol

Non-Terminal

symbols

We can summarize the difference between the types of grammar in table 1.

Type 0 Type 1 Type 2 Type 3

Unrestricted

Grammar

Context Sensitive

Grammar

Context free

Grammar

Regular Grammar

𝛼 ∈ (𝑁 ∪ 𝑇)+

𝛽 ∈ (𝑁 ∪ 𝑇)∗

|α| ≤ |𝛽|

𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)+

𝛽 ∈ (𝑁 ∪ 𝑇)∗

or

Type 0 (Unrestricted Grammar or Phrase-Structure Grammar)

In automaton, Unrestricted Grammar or Phrase Structure Grammar is the most general in the

Chomsky Hierarchy of classification. Type 0 grammar, generally used to generate Recursively

Enumerable languages. It is called unrestricted because no other restriction is made on this

except each of their left hand sides being non-empty. The left hand sides of the rules can

contain terminal and non-terminal, but the condition is at least one of them must be non-

terminal.

A Turing Machine can simulate unrestricted grammar. Unrestricted grammar can always be

found for the language recognized or generated by any Turing Machine.

Example:

S A | B

A aA | a

B bB | b

The above grammar uses to describe the language L(G) ={ ai + bj | i ,j ≥ 1}.

∝→ 𝛽𝑤| 𝑤

∝→ 𝑤𝛽| 𝑤

Table 1: Grammar Types

Type 1 (Context sensitive grammar)

The Context Sensitive Grammar is formal grammar in which the left-hand sides and right-

hand sides of any production rules may be surrounded by a context of terminal and non-

terminal grammar. It is less general than Unrestricted Grammar and more general than

Context Free Grammar (CFG).

Example:

S SAS | a

aAa bba

The language which can be described by the above grammar is L(G) = {(bb)ia | i ≥ 0}.

Type 2 (Context free grammar)

A grammar is said to be context-free, if every production is in the form:

 A → α

where, A is non-terminal symbol and α ∈ (N ∪ T)*. The set of production rules describes all

possible strings. In this type, productions are simple replacements.

Production rules

In Context-Free Grammar (CFG), all rules are one to one, one-to-many or one-to-none. The

left hand side of the production rule is always a non-terminal symbol.

Example:

S XaaX

X aX | bX | ɛ

The grammar uses to describe the language L(G)={(a+b)i aa (a+b)j | i,j ≥ 0}.

Type 3 (Regular grammar)

If all production of a CFG are of the form A wB or A w, where A and B are variables

and w ϵ NT*, then we say that grammar is right linear. If all production of a CFG are of the

form A Bw or A w, we call it left linear.

A right or left linear grammar is called a Regular Grammar (RG). Every regular

expression can be represented by a regular grammar. As there is a finite automaton for

every regular expression, we can generate a finite automaton for the regular grammar.

Example:

S 0A

A 10A | ɛ

The above grammar is a right-linear grammar which describes the language

L(G)={0(10)i | i ≥ 0} .

The left-linear grammar which describes the same language L(G) is:

S S10 | 0

Derivation tree of a grammar:

 Represents the language using an ordered rooted tree.

 Root represents the starting symbol.

 Internal vertices represent the nonterminal symbol that arise in the production.

 Leaves represent the terminal symbols.

► If the production A → w arises in the derivation, where w is a word, the vertex

that represents A has as children vertices that represent each symbol in w, in

order from left to right.

Language Generated by a Grammar

Example: Let G = ({S,A},{a,b}, S,
{S → aA, S → b, A → aa}). What is L(G)?

Easy: We can just draw a tree
of all possible derivations.

– We have: S aA aaa.

– and S b.

Answer: L = {aaa, b}.

Example of a derivation tree or parse tree or sentence diagram.

Example: Derivation Tree

 Let G be a context-free grammar with the productions
 P = {S →aAB, A →Bba, B →bB, B →c}.
 The word w = acbabc can be derived from S as follows:

 S ⇒ aAB →a(Bba)B ⇒ acbaB ⇒ acba(bB) ⇒ acbabc

Thus, the derivation tree is given as follows:

S

aA b

aaa

S

a

A B

B b a

c

b B

c

