Computation Theory
Lec. (3) Second stage

College of Information Technology
Dept. Software

Summary of Grammar Types

Grammars use to generate sentences of a language and to determine if a given sentence is in a
language. Formal languages, generated by grammars, provide models for programming
languages (Java, C, etc) as well as natural language important for constructing compilers.
Definition:

Grammar is a finite set of formal rules for generating syntactically correct sentences or
meaningful correct sentences. A Grammar can contain mainly two elements - Terminal (T)
and Non Terminal (N).

Terminal Symbols (T)

It is a portion of the sentence generated by using a grammar. It is denoted by using small
letters, such as a, b, c, d, etc.

Non Terminal Symbols

It takes part in the formation of a sentence, but not part of it. It is denoted by using capital

letters, such as A, B, C, D, etc. It is also called auxiliary symbols.

G=(N,T,S,P)

Productions rules must be in the form:

a—f

We can summarize the difference between the types of grammar in table 1.

Table 1: Grammar Types

Type O Type 1 Type 2 Type 3
Unrestricted Context Sensitive Context free Regular Grammar
Grammar Grammar Grammar
a—f a—f a—f a—f
a€(NUT)* o <[B] BeEWUT)" - Bw|w
pENUT) a,p€(NUT)* or
= wfh|w

Type 0 (Unrestricted Grammar or Phrase-Structure Grammar)

In automaton, Unrestricted Grammar or Phrase Structure Grammar is the most general in the
Chomsky Hierarchy of classification. Type 0 grammar, generally used to generate Recursively
Enumerable languages. It is called unrestricted because no other restriction is made on this
except each of their left hand sides being non-empty. The left hand sides of the rules can

contain terminal and non-terminal, but the condition is at least one of them must be non-

terminal.

A Turing Machine can simulate unrestricted grammar. Unrestricted grammar can always be

found for the language recognized or generated by any Turing Machine.

Example:

S — A|B
A—s» aAja
B— bB|Db

The above grammar uses to describe the language L(G) ={a'+ bl | i,j >1}.

Type 1 (Context sensitive grammar)

The Context Sensitive Grammar is formal grammar in which the left-hand sides and right-
hand sides of any production rules may be surrounded by a context of terminal and non-
terminal grammar. It is less general than Unrestricted Grammar and more general than
Context Free Grammar (CFG).

Example:

S— SAS|a

aAa — bba

The language which can be described by the above grammar is L(G) = {(bb)'a | i > 0}.

Type 2 (Context free grammar)
A grammar is said to be context-free, if every production is in the form:
A—a
where, A is non-terminal symbol and a € (N U T)*. The set of production rules describes all
possible strings. In this type, productions are simple replacements.
Production rules
In Context-Free Grammar (CFG), all rules are one to one, one-to-many or one-to-none. The
left hand side of the production rule is always a non-terminal symbol.
Example:
S — XaaX
X — aX|bX|¢

The grammar uses to describe the language L(G)={(a+b)' aa (a+b)' |i,j > 0}.

Type 3 (Regular grammar)
If all production of a CFG are of the form A — wB or A — w, where A and B are variables
and w € NT*, then we say that grammar is right linear. If all production of a CFG are of the

form A —Bw or A— w, we call it left linear.

A right or left linear grammar is called a Regular Grammar (RG). Every regular
expression can be represented by a regular grammar. As there is a finite automaton for
every regular expression, we can generate a finite automaton for the regular grammar.
Example:

S—» 0A

A—>10A|¢

The above grammar is a right-linear grammar which describes the language
L(G)={0(10) [i>0}.

The left-linear grammar which describes the same language L(G) is:

S— S10|0

Derivation tree of a grammar:

e Represents the language using an ordered rooted tree.
¢ Root represents the starting symbol.
e Internal vertices represent the nonterminal symbol that arise in the production.
o Leaves represent the terminal symbols.
» If the production A — w arises in the derivation, where w is a word, the vertex
that represents A has as children vertices that represent each symbol in w, in

order from left to right.

Language Generated by a Grammar

Example: Let G = ({S,A},{a,b}, S,
{S=>0aA,S—> b, A= aa}). Whatis L(G)?
Easy: We can just draw a tree
of all possible derivations.
— We have: S = dA = aaa.
— and S = b.

Answer: L ={aaa, b}.

Example of a derivation tree or parse tree or sentence diagram.
aA b

aad

Example: Derivation Tree

Let G be a context-free grammar with the productions
P ={S —aAB, A —Bba, B—bB, B —c}.
The word w = acbabc can be derived from S as follows:

S = aAB —a(Bba)B = acbaB = acba(bB) = acbabc
Thus, the derivation tree is given as follows:

G/E\B
AN AN

B
\ \
C

C

