
Computer Architecture
Second year

Dr. Salah Al-Obaidi

Lecture #2: Primary Microprocessor Architectures

Spring 2024

Contents

Contents i

2 Primary Microprocessor Architectures 13

2.1 Complex Instruction Set Computing (CISC) 13

2.1.1 CISC Background . 13

2.1.2 CISC Instruction Set Organization 13

2.1.3 CISC Hardware Implementation 14

2.1.4 CISC Applications . 15

2.2 Reduced Instruction Set Computing (RISC) 16

2.2.1 RISC Background . 16

2.2.2 Characteristics of Reduced Instruction Set Architectures 17

2.2.3 RISC Instruction Set Organization 18

2.2.4 RISC Hardware Implementation 19

2.2.5 RISC PIPELINING . 19

2.2.6 Multiple Registers and Register Windowing 21

2.2.7 RISC Applications . 22

i

2. Primary Microprocessor Architectures

2.1 Complex Instruction Set Computing (CISC)

2.1.1 CISC Background

Because software compilers were in their infancy during the 1970’s, computer instruction

sets evolved around the needs of the human programmer, not the software. Ease of

programming motivated rich instruction set development, and microcode updates enabled

quick updates for new instructions. In these early years, memory capacity and price were

at a premium, and program runtime footprints kept understandably small. This required

that instruction sets be highly encoded, thus minimizing processor-memory bandwidth

requirements. These restrictions led to the development of complex encoded instruction

sets interpreted by microcode engines. The term CISC encompasses this approach. Two

principal reasons have motivated this trend: a desire to simplify compilers and a desire to

improve performance.

2.1.2 CISC Instruction Set Organization

In the early days of the Intel x86 series, designers attempted to simplify and reduce the

“semantic gap”, which is the difference between the operations provided in high-level

languages (HLLs) and those provided in computer architecture, between software and

CPU instruction sets. Symptoms of this gap are alleged to include execution inefficiency,

excessive machine program size, and compiler complexity. Designers responded with

architectures intended to close this gap. Key features include large instruction sets, dozens

of addressing modes, and various HLLs statements implemented in hardware.

13

2. Primary Microprocessor Architectures

This resulted in a large, richly typed instruction set to lower software development

costs. To facilitate reuse and market proliferation, commercial CPU hardware required

compatibility with existing computers of the same family. Hence, the creation of supersets

and expansion of features to ensure hardware portability and accommodate high-level

programming languages such as C, C++, and Java. Such complex instruction sets are

intended to:

1. Ease the task of the compiler writer.

2. Improve execution efficiency, because complex sequences of operations can be

implemented in microcode.

3. Provide support for even more complex and sophisticated HLLs.

As a result, the mix of instruction types for a CISC machine can number in the

hundreds. CISC instructions tend to vary in width (8/16/32/64-bit) and can specify

individual or complete sequences of operations. As forward and backward compatibility

requirements dictate, developers simply add more instructions to the CISC microcode

ROM. See Table 2.1 below for an overview of typical CISC instructions.

Table 2.1: Typical CISC Instructions

Operator type Examples
Arithmetic and logic Integer arithmetic and logical operations: ADD, SUB, AND, OR
Data transfer Load/store (move data:register/external memory, addressing modes)
Control Branch, jump, procedure calls, taps
System Operating system call, virtual memory management
Floating point Floating point operations: FADD, FMULT, FDIV
Decimal ADD, MULT, decimal → char conversations
String String move, compare, search

2.1.3 CISC Hardware Implementation

At power-up, a CISC CPU accesses the microcode ROM, executing a bootstrap sequence

of instructions to “enable” the processor into a startup state. During normal operation,

the CPU microsequencer accesses microcode ROM as needed to execute instructions and

14

2.1. Complex Instruction Set Computing (CISC)

active the appropriate control signals in a logical sequence. Due to the large number of

clock states, a CISC instruction set must support microprogrammed control to implement

the control unit logic as opposed to hardwired (hardware implemented) control. In most

cases, hardware changes are not required as more instructions expand the microcode. In

operation, the microcode program is stored inside an internal lookup ROM.

Because of shrinking transistor geometries, CISC developers were quickly able to boost

performance by adding hardware resources. For example, the Intel 80386 was the first

commercially available CISC to offer a complete 32-bit architecture. The 80386 included

a 32-bit instruction set, a 32-bit data bus, and a 32-bit virtual address space while still

maintaining object code compatibility with prior 16-bit Intel x86 processors.

In addition, the 80386 and follow-on CISC processors expanded integer data and address

storage by simply adding more internal registers. Because a CISC microsequencer directly

accesses local registers, memory I/O operations decrease, thus improving instruction

execution efficiency. The 80386 was the first CISC to include an internal MMU (Memory

Management Unit) supporting segmentation, paging, and protection through the full 32-bit

virtual address space.

Beyond the 80386, the Intel Pentium series of processors built upon the earlier

x86 designs, significantly enhancing the architecture’s performance by adding internal

instruction and data caches, hardware branch prediction, and superscaler execution units.

Superscaler CPUs fetch, decode, and execute multiple instructions during each clock cycle.

Multiple instruction execution is made possible by implementing deep parallel instruction

pipelines with multiple (ALU) Arithmetic Logic Units. Figure 2.1 shows the Key CISC

Microprocessors.

2.1.4 CISC Applications

One does not require statistics to see the impact of CISC in general, and the Intel

x86 architecture in particular on the computing world. In 1994, the early Pentium

designs offered little advantage over their RISC contemporaries. Not to be left behind,

Intel’s aggressive pricing, marketing, and rapid increase in clock speed enabled Pentium

derivatives to dominate the desktop market by 1995, and the notebook market by 1996.

15

2. Primary Microprocessor Architectures

Figure 2.1: Key CISC Microprocessors.

By adding incremental superscaler features and improving the silicon process technology,

Intel expanded the original Pentium design into the Pentium II-IV series and beyond.

Intel is not the only manufacturer of x86 CISC CPUs. AMD leveraged the x86

architecture with the K5 – K9 series, the K7 being the first commercially available

microprocessor to hit 1GHz.

2.2 Reduced Instruction Set Computing (RISC)

2.2.1 RISC Background

During the late 1970’s, IBM began project 801 to create a load/store oriented instruction

set architecture that would be two-five times faster than other CPU architectures. In 1980,

David A. Patterson at UC Berkeley began a similar project and built two machines called

“RISC-I” and “RISC-II”. The Berkeley architecture included simple load/store instructions

and a new concept termed “register windowing”. This means the use of a large set of

registers should decrease the need to access memory.

On a similar quest, John L. Hennessy at Stanford University published a description

of an efficient pipelining and compiler-assisted scheduling machine termed the “MIPS”

architecture. It was hoped that the new RISC architectures would have a lower Clock

Per Instruction (CPI) rate than existing CISC architectures such as the Intel 80XXX

16

2.2. Reduced Instruction Set Computing (RISC)

and DEC VAX-11/780 architectures. This meant that RISC machines could execute

more instructions within the same clock rate.

The initial premise of RISC vs. CISC was that 90% of clock cycles execute only 10%

of the instruction set. To realize a high-performance single-chip CPU, the design would

need to be simple, with just enough logic to perform basic tasks such as load-store of

internal/external locations and arithmetic operations. With instruction sets growing more

complex to support high-level compilers, CISC CPUs required more logic to implement

extra functionality—thereby increasing transistor counts and die sizes. Larger die sizes

translated to higher development/production costs and frequencies.

Patterson and Ditzel concluded that instructions added for a given compiler generally

were useless for other compilers. They also discovered that replacing complex instructions

with a small number of lower-level instructions yielded minimal loss in performance.

Furthermore, compiler development for a CISC instruction set was more time-consuming

and bug-prone than compiler development for the simpler RISC architecture.

2.2.2 Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture have

been taken, certain characteristics are common to all of them:

1. One instruction per cycle.

2. Register-to-register operations.

3. Simple addressing modes.

4. Simple instruction formats.

The first characteristic listed is that there is one machine instruction per machine

cycle. A machine cycle is defined to be the time it takes to fetch two operands from

registers, perform an ALU operation, and store the result in a register. Thus, RISC

machine instructions should be no more complicated than, and execute about as fast

as, microinstructions on CISC machines. Such instructions should execute faster than

comparable machine instructions on other machines.

17

2. Primary Microprocessor Architectures

A second characteristic is that most operations should be register to register, with

only simple LOAD and STORE operations accessing memory. This design feature simplifies

the instruction set and therefore the control unit. For example, a RISC instruction set

may include only one or two ADD instructions (e.g., integer add, add with carry); the

VAX has 25 different ADD instructions. Another benefit is that such an architecture

encourages the optimization of register use, so that frequently accessed operands remain

in high-speed storage.

A third characteristic is the use of simple addressing modes. Almost all RISC

instructions use simple register addressing. This design feature simplifies the instruction

set and the control unit.

A final common characteristic is the use of simple instruction formats. Generally,

only one or a few formats are used. Instruction length is fixed and aligned on word

boundaries. Field locations, especially the opcode, are fixed. This design feature has a

number of benefits. With fixed fields, opcode decoding and register operand accessing can

occur simultaneously. Simplified formats simplify the control unit. Instruction fetching

is optimized because word-length units are fetched. Alignment on a word boundary also

means that a single instruction does not cross page boundaries.

2.2.3 RISC Instruction Set Organization

RISC microprocessors implement simple operations with fixed-width instructions (32/64).

In general, most RISC processors include fewer than 100 instructions and execute at least

one instruction per primary clock cycle. Even though the instruction set is small, RISC

includes basic operations to accomplish system tasks. These tasks include data movement

(internal/external load/store, internal register data movement), arithmetic, logic, shift

operations, and simple branch instructions. Today, the RISC/CISC barrier is blurring, and

many processors use hardware implementations derived from both classes of instruction

sets.

18

2.2. Reduced Instruction Set Computing (RISC)

2.2.4 RISC Hardware Implementation

Because a smaller instruction set yields simpler logic requirements, RISC uses hardwired

control logic as opposed to the more complex CISC microcode implementation. Due to the

reduced logic complexity, RISC processors can incorporate several performance enhancing

concepts such as pipelining, multiple internal registers, and register windowing while still

maintaining relatively low transistor counts.

2.2.5 RISC PIPELINING

Instruction pipelining is often used to enhance performance. Let us reconsider this in

the context of a RISC architecture. Most instructions are register to register, and an

instruction cycle has the following two stages:

■ I: Instruction fetch.

■ E: Execute. Performs an ALU operation with register input and output.

For load and store operations, three stages are required:

■ I: Instruction fetch.

■ E: Execute. Calculates memory address.

19

2. Primary Microprocessor Architectures

■ D: Memory. Register-to-memory or memory-to-register operation.

Figure 2.2a depicts the timing of a sequence of instructions using no pipelining.

Clearly, this is a wasteful process. Even very simple pipelining can substantially improve

performance. Figure 2.2b shows a two-stage pipelining scheme, in which the I and E

stages of two different instructions are performed simultaneously. The two stages of the

pipeline are an instruction fetch stage, and an execute/memory stage that executes the

instruction, including register-to-memory and memory-to-register operations. Thus we

see that the instruction fetch stage of the second instruction can be performed in parallel

with the first part of the execute/ memory stage. However, the execute/memory stage

of the second instruction must be delayed until the first instruction clears the second

stage of the pipeline. This scheme can yield up to twice the execution rate of a serial

scheme. Two problems prevent the maximum speedup from being achieved. First, we

assume that a single-port memory is used and that only one memory access is possible

per stage. This requires the insertion of a wait state in some instructions. Second, a

branch instruction interrupts the sequential flow of execution. To accommodate this with

minimum circuitry, a NOOP instruction can be inserted into the instruction stream by

the compiler or assembler.

(a) Sequential execution
(b) Two-stage pipelined timing

1

(c) Three-stage pipelined timing (d) Four-stage pipelined timing

Figure 2.2: The Effects of Pipelining

Pipelining can be improved further by permitting two memory accesses per stage. This

20

2.2. Reduced Instruction Set Computing (RISC)

yields the sequence shown in Figure 2.2c. Now, up to three instructions can be overlapped,

and the improvement is as much as a factor of 3. Again, branch instructions cause the

speedup to fall short of the maximum possible. Also, note that data dependencies have an

effect. If an instruction needs an operand that is altered by the preceding instruction, a

delay is required. Again, this can be accomplished by a NOOP.

The pipelining discussed so far works best if the three stages are of approximately

equal duration. Because the E stage usually involves an ALU operation, it may be longer.

In this case, we can divide into two substages:

■ E1: Register file read

■ E2: ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design of the

phasing into three or four stages is easily accomplished. Figure 2.2c shows the result

with a four-stage pipeline. Up to four instructions at a time can be under way, and the

maximum potential speedup is a factor of 4. Note again the use of NOOPs to account for

data and branch delays.

2.2.6 Multiple Registers and Register Windowing

Most RISC and CISC designs use large numbers of general and special purpose registers

(GPR/SPR) to store intermediate values. Extra registers enable fast data access since

the CPU does not require external load/store to access required information. Reducing

external memory referencing improves performance for applications requiring frequent

calls to/from subroutines.

To boost performance, the SPARC (Scalable Processor ARChitecture) CPU from Sun

Microsystems uses “register windowing” to pass parameters between subroutines. This

concept utilizes fully accessible global registers and window pointer/window mask registers.

Window pointer registers contain the address of active registers while window mask

registers contain a bit flagging all registers containing valid data. As a result, the SPARC

processor can pass parameters to subroutines through registers that overlap windows.

21

2. Primary Microprocessor Architectures

Without this feature, parameters would be passed through external memory, consuming

precious CPU and I/O cycles.

2.2.7 RISC Applications

The growth of RISC in the commercial market began in the late 1980’s with the SPARC

CPU from Sun Microsystems. Prior to this, Sun relied upon CISC architectures such as the

Motorola 680x0 series of CPU’s to power Sun’s UNIX workstations. The UNIX operating

system enabled multi-user/multi-tasking, as opposed to the single-tasked limitation of the

original Microsoft Windows platforms.

Sun’s quest for higher performance and lower CPU costs fueled initial SPARC

development. Within a few years, SPARC replaced Sun’s CISC-based machines. During

this period, RISC-based UNIX workstations became the platform of choice for EDA

(Electronic Design Automation) software.

Contemporary EDA tasks such as RTL simulation, RTL-gate synthesis, cell APR

typically ran on HP/PA-RISC, MIPS RISC, and SPARC-based platforms. The raw

compute power of RISC vs. contemporary CISC machines (80486 DOS/Windows PC’s)

allowed RISC to dominate the scientific and engineering world until the mid-1990’s.

Following on the heals of Sun, the joint IBM/Motorola/Apple development of PowerPC

RISC microprocessors from 1992 onward allowed Apple Computer to replace its line of

680x0 CISC machines. Apple’s PowerPC machines target contemporary desktop users and

professionals requiring high performance for tasks such as video editing, graphics design,

and 3D-gaming applications. PowerPC established Apple as the only manufacturer of

RISC-based systems with a measurable share of the desktop market.

Figure 2.3 shows the Key RISC Microprocessors.

Figure 2.3: Key RISC Microprocessors.

22

	Contents
	Primary Microprocessor Architectures
	Complex Instruction Set Computing (CISC)
	CISC Background
	CISC Instruction Set Organization
	CISC Hardware Implementation
	CISC Applications

	Reduced Instruction Set Computing (RISC)
	RISC Background
	Characteristics of Reduced Instruction Set Architectures
	RISC Instruction Set Organization
	RISC Hardware Implementation
	 RISC PIPELINING
	Multiple Registers and Register Windowing
	RISC Applications

