
Intermediate Code Generation (IR) 
 
 
 
 
 
In the analysis-synthesis model of a compiler, the front end analyzes a source 
program and creates an intermediate representation, from which the back end 
generates target code. This facilitates retargeting: enables attaching a back end for 
the new machine to an existing front end.  
 
Logical Structure of a Compiler Front End  
 

 
 
A compiler front end is organized as in figure above, where parsing, static 
checking, and  intermediate-code generation are done sequentially; sometimes they 
can be combined and folded into parsing. All schemes can be implemented by 
creating a syntax tree and then walking the tree.  
 
Static Checking  
This includes type checking which ensures that operators are applied to compatible 
operands. It also includes any syntactic checks that remain after parsing like  
• Flow–of-control checks  
    – Ex: Break statement within a loop construct  
• Uniqueness checks  
   – Labels in case statements  
• Name-related checks  
 
Intermediate Representations  
We could translate the source program directly into the target language.  However, 
there are benefits to having an intermediate, machine-independent 
representation.   
• A clear distinction between the machine-independent and machine-dependent 
parts of the compiler  
• Retargeting is facilitated; the implementation of language processors for new 
machines will require replacing only the back-end  
• We could apply machine independent code optimization techniques  
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Intermediate representations span the gap between the source and target languages.   
• High Level Representations   
   – Closer to the source language  
   – Easy to generate from an input program  
   – Code optimizations may not be straightforward  
 
• Low Level Representations   
   – Closer to the target machine  
   – Suitable for register allocation and instruction selection  
   – Easier for optimizations, final code generation  
 
There are several options for intermediate code. They can be either   
• Specific to the language being implemented  
 P-code for Pascal  
 Bytecode for Java  

• Language independent:  
 3-address code   

 
IR can be either an actual language or a group of internal data structures that are 
shared by the phases of the compiler. C used as intermediate language as it is 
flexible, compiles into efficient machine code and its compilers are widely 
available.  
In all cases, the intermediate code is a linearization of the syntax tree produced 
during syntax and semantic analysis. It is formed by breaking down the tree 
structure into sequential instructions, each of which is equivalent to a single or 
small number of machine instructions. Machine code can then be generated (access 
might be required to symbol tables etc).   
 
Syntax Trees  
 
 
 
 
 
 
Syntax trees are high level IR. They depict the natural hierarchical structure of 
the source program. Nodes represent constructs in source program and the 
children of a node represent meaningful components of the construct. Syntax 
trees are suited for static type checking.  
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Variants of Syntax Trees (DAG)  
A directed acyclic graph (DAG) for an expression identifies the common sub 
expressions (sub expressions that occur more than once) of the expression. 
DAG's can be constructed by using the same techniques that construct syntax trees.  
A DAG has leaves corresponding to atomic operands and interior nodes 
corresponding to operators.  A node N in a DAG has more than one parent if N 
represents a common sub expression, so a DAG represents expressions 
concisely. It gives clues to compiler about the generating efficient code to evaluate 
expressions.   
 
Example 1: Given the grammar below, for the input string id + id * id, the parse 
tree, syntax tree and the DAG are as shown.   
 
Grammar: 

E→E+T | T 

T→T*F | F 

F→ (E) | id  

 

 

 
 
Example 2: DAG for the expression (a + a * (b - c)) + ((b - c) * d) is shown 
below.  
 
 
  
 
 
 
 
 
 
 
Using the SDD (Syntax Direct Definition) to draw syntax tree or DAG for a 
given expression:-  
• Draw the parse tree  
• Perform a post order (left, right, and root) traversal of the parse tree  
• Perform the semantic actions at every node during the traversal  

 



   – Creates a syntax tree if a new node is created each time functions Leaf and 
Node are called – Constructs a DAG if before creating a new node, these functions 
check whether an identical node already exists. If yes, the existing node is 
returned.   
SDD to produce Syntax trees or DAG is shown below: 
 

PRODUCTION SEMANTIC RULES 
E→ E1+T E.node= new Node(‘+’,E1.node,T.node) 
E→ E1-T E.node= new Node(‘-’,E1.node,T.node) 
E→ T E.node=T.node 
T→ (E) T.node=E.node 
T→ id T.node = new Leaf(id,id.entry) 
T→ num T.node = new Leaf(num,num.val) 

 
 For the expression (a + a * (b - c)) + ((b - c) * d), steps for constructing the DAG 
is as below.   
 

1) P1= Leaf(id,entry-a) 
2) P2= Leaf(id,entry-a)= p1 
3) P3= Leaf(id,entry-b) 
4) P4= Leaf(id,entry-c) 
5) P5= Node(‘-‘,p3,p4) 
6) P6= Node(‘*‘,p1,p5) 
7) P7= Node(‘+‘,p1,p6) 
8) P8= Leaf(id,entry-b)= p3 
9) P9= Leaf(id,entry-c)= p4 
10) P10= Node(‘-‘,p3,p4)= p5 
11) P11= Leaf(id,entry-d) 
12) P12= Node(‘*‘,p5,p11) 
13) P13= Node(‘+‘,p7,p12) 
 

Value-Number Method for Constructing DAGs  
Nodes of a syntax tree or DAG are stored in an array of records. The integer 
index of the record for a node in the array is known as the value number of that 
node.    
The signature of a node is a triple < op, l, r> where op is the label, l the value 
number of its left child, and r the value number of its right child. The value-



number method for constructing the nodes of a DAG uses the signature of a node 
to check if a node with the same signature already exists in the array. If yes, 
returns the value number. Otherwise, creates a new node with the given 
signature.   
Since searching an unordered array is slow, there are many better data structures to 
use. Hash tables are a good choice.  
 

 

 
1 id                    to entry for i 
2 num 10  
3 + 1 2  
4 = 1 3  
5     ….  

 

Nodes of DAG for i=i+10 allocated in an array 
 
Three Address Code (TAC)  
TAC can range from high- to low-level, depending on the choice of operators. In 
general, it is a statement containing at most 3 addresses or operands.  
The general form is x: = y op z, where “op” is an operator, x is the result, and y 
and z are operands. x, y, z are variables, constants, or “temporaries”. A three 
address instruction consists of at most 3 addresses for each statement. It is a 
linearized representation of a binary syntax tree. Explicit names correspond to 
interior nodes of the graph. E.g., for a looping statement, syntax tree represents 
components of the statement, whereas three-address code contains labels and 
jump instructions to represent the flow-of-control as in machine language.  
 

 

t1 = b - c 
t2 = a * t1 
t3 = a + t2 
t4 = t1 * d 
t5 = t3 + t4 
 
(b) Three-address code 

 
A TAC instruction has at most one operator on the RHS of an instruction; no 
built up arithmetic expressions are permitted.  
e.g. x + y * z can be translated as   
t1 = y * z  



t2 = x + t1  
where t1  & t2   are compiler–generated temporary names.   
Since it unravels multi-operator arithmetic expressions and nested control-flow 
statements, it is useful for target code generation and optimization.   
 
Addresses and Instructions  
• TAC consists of a sequence of instructions; each instruction may have up to 
three addresses, prototypically t1 = t2 op t3  
• Addresses may be one of:  
– A name.  Each name is a symbol table index.  For convenience, we write the 
names as the identifier.  
– A constant.  
– A compiler-generated temporary.  Each time a temporary address is needed, 
the compiler generates another name from the stream t1, t2, t3, etc.  
• Temporary names allow for code optimization to easily move instructions  
• At target-code generation time, these names will be allocated to registers or to 
memory.  
  
• TAC Instructions  
– Symbolic labels will be used by instructions that alter the flow of control.   
The instruction addresses of labels will be filled in later.  
  L:  t1 = t2 op t3  
– Assignment instructions:  x = y op z  
• Includes binary arithmetic and logical operations  
– Unary assignments:          x = op y   
• Includes unary arithmetic op (-) and logical op (!) and type conversion  
– Copy instructions:  x = y  
– Unconditional jump:  goto L  
• L is a symbolic label of an instruction  
– Conditional jumps:      
      if x goto L  If x is true, execute instruction L next  
      if False x goto L If x is false, execute instruction L next  
– Conditional jumps:  
  if x relop y goto L  
– Procedure calls.  For a procedure call p(x1, …, xn)  
 param x1  
 …     
 param xn  
 call p, n  
– Function calls : y= p(x1, …, xn)    y = call p,n  , return  y   



– Indexed copy instructions:   x = y[i]    and x[i] = y  
• Left:  sets x to the value in the location i memory units beyond y  
• Right:  sets the contents of the location i memory units beyond x to y  
– Address and pointer instructions:  
• x = &y sets the value of x to be the location (address) of y.  
• x = *y, presumably y is a pointer or temporary whose value is a location.  The 
value of x is set to the contents of that location.  
• *x = y sets the value of the object pointed to by x to the value of y.  
Example: Given the statement do i = i+1; while (a[i] < v); , the TAC can be 
written as below in two ways, using either symbolic labels or position number of 
instructions for labels.   
L:   t1= i+1 
      i= t1 
      t2=i*8 
      t3= a[t2] 
      If  t3 < v goto L 

(a) Symbolic labels 

100:   t1= i+1 
101:   i= t1 

102:   t2=i*8 
103:    t3= a[t2] 
104:    If  t3 < v goto 100 

(b) Position numbers 
 
Data structures for representation of TAC can be objects or records with fields 
for operator and operands. Representations include quadruples, triples and 
indirect triples.  
 
Examples  
Write Three-address code for the following: 
1. x = y * z + q / r 
2. x = a[i], where the array has type int 
 

Solution 

1. 
t1 = y * z 
t2 = q / r 
x = t1 + t2 

2. 

t1 = i * 4 
x  = a [ t1] 

 

Quadruples  
• In the quadruple representation, there are four fields for each instruction:  op,  
arg1, arg2, result  
– Binary ops have the obvious representation  
– Unary ops don’t use arg2  
– Operators like param don’t use either arg2 or result  



– Jumps put the target label into result  
 
The Figure below implement the three-address code in (a) and quadruples in (b), 
for the expression   
 
a = (b * - c )+ (b * - c ) 
 
t1= minus c 
t2= b* t1 
t3= minus c 
t4= b* t3 
t5= t2+t4 
a= t5 
 

(a) Three-address code 

 op arg1 arg2 result 
0 minus c  t1 
1 * b t1 t2 
2 minus c  t3 
3 * b t3 t4 
4 + t2 t4 t5 
5 = t5  a 

(b) Quadruples 
 
 
Triples  
• A triple has only three fields for each instruction:  op, arg1, arg2  
• The result of an operation x op y is referred to by its position.  
• Triples are equivalent to signatures of nodes in DAG or syntax trees.   
• Triples and DAGs are equivalent representations only for expressions; they are 
not equivalent for control flow.  
• Ternary operations like x[i] = y requires two entries in the triple structure, 
similarly for  x = y[i].  
• Moving around an instruction during optimization is a problem  
 
Example: Representations of a =b *– c + b * – c   
 

 
 
(a) Syntax Tree 

 
 op arg1 arg2 
0 minus c  
1 * b (0) 
2 minus c  
3 * b (2) 
4 + (1) (3) 
5 = a (4) 

(b) Triples 

 



Example: Translate the arithmetic expression a+ - (b+c) into TAC, Quadruples, 
and Triples 

TAC Quadruples Triples 
t1= b+c 
t2= - t1 
t3= a+t2 
 

op arg1 arg2 result 
+ b c t1 
- t1  t2 
+ a t2 t3 

 

 op arg1 arg2 
0 + b c 
1 - (0)  
2 + a (1) 

 

           
Indirect Triples  
These consist of a listing of pointers to triples, rather than a listing of the triples 
themselves. An optimizing compiler can move an instruction by reordering the 
instruction list, without affecting the triples themselves.   
 

 
Instruction 
35 (0) 
36 (1) 
37 (2) 
38 (3) 
39 (4) 
40 (5) 
 …… 
 

 

 op arg1 arg2 
0 minus c  
1 * b (0) 
2 minus c  
3 * b (2) 
4 + (1) (3) 
5 = a (4) 

 

 
 
Static Single-Assignment Form  
Static single-assignment form (SSA) is an intermediate representation that 
facilitates certain code optimizations. Two distinctive aspects distinguish SSA 
from three-address code.   
• All assignments in SSA are to variables with distinct names; hence static single- 
assignment.  
• Φ-FUNCTION  
Same variable may be defined in two different control-flow paths. For example,   
   if ( flag ) x = -1; else x = 1;  
     y = x * a;   
    using Φ-function it can be written as    
  if ( flag ) x1 = -1; else x2 = 1;  
  x3 = Φ(x1,x2);  
  y = x3 * a;   
 



The Φ -function returns the value of its argument that corresponds to the control- 
flow path that was taken to get to the assignment statement containing the Φ – 
function.   
 
Example: Convert the source program to SSA (Static single assignment form) 
a = b + c 
b = c + 1 
d = b + c 
a = a + 1 
e = a + b 
 

Solution 

a1= b1 + c1 
b2= c1 + 1 
d1= b2 + c1 
a2= a1 + 1 
e1= a2 + b2  

 
Types  
A type typically denotes a set of values and a set of operations allowed on those 
values. Applications of types include type checking and translation.    
Certain operations are legal for each type. For example, it doesn’t make sense to 
add a function pointer and an integer in C. But it does make sense to add two 
integers. But both have the same assembly language implementation!   
A language’s Type System specifies which operations are valid for which types.   
Type Checking is the process of verifying fully typed programs. Given an 
operation and an operand of some type, it determines whether the operation is 
allowed.  The goal of type checking is to ensure that operations are used with the 
correct types. It uses logical rules to reason about the behavior of a program and 
enforces intended interpretation of values.   
Type Inference is the process of filling in missing type information. Given the 
type of operands, determine the meaning of the operation and the type of the 
operation; or, without variable declarations, infer type from the way the 
variable is used.   
Components of a Type System  
• Built-in types  
• Rules for constructing new types  



• Rules for determining if two types are equivalent  
• Rules for inferring the types of expressions  
 
Type Expressions  
Types have structure, represented using type expressions. Type expressions can be 
either basic type or formed by applying type constructors.   
 
Example: an array type int[2][3] has the type expression is array(2, array(3, 
integer)) where array is the operator and takes 2 parameters, a number and a type.  
 
Definition of Type Expressions  
• A basic type is a type expression. Typical basic types for a language include 
Boolean, char, integer, float, and void.  
• A type name is a type expression.  
• A type expression can be formed by applying the array type constructor to a 
number and a type expression.  
• A record is a data structure with named fields. A type expression can be formed 
by applying the record type constructor to the field names and their types.   
• A type expression can be formed by using the type constructor → for function 
types. We write s→ t for "function from type s to type t.   
 
If s and t are type expressions, then their Cartesian product s × t is a type 
expression. Products can be used to represent a list or tuple of types (e.g., for 
function parameters). 
• Type expressions may contain variables whose values are type expressions. 
 
 
Representing Type Expressions 
– Construct a DAG for type expression adapting the value-number method. 
– Interior nodes represent type constructors. 
– Leaves represent basic types, type names, and type variables. 
 
Type graphs: are graph-structured representations of type expressions: 
– Basic types are given predefined “internal values”; 
– Named types can be represented via pointers into a hash table. 
– A composite type expression f (T1,…,Tn) is represented as a node identifying the 
constructor f and with pointers to the nodes for T1, …,Tn. 
E.g.: type graph for the type expression of int x[10][20] is shown below.            
(elt. =element) 
 



 
 
Type Equivalence  
The two types of type equivalence are structural equivalence and name 
equivalence.  
Structural equivalence: When type expressions are represented by graphs, two 
types are structurally equivalent if and only if one of the following conditions is 
true:  
1. They are the same basic type  
2. They are formed by applying the same constructor to structurally equivalent 
types.  
3. One is a type name that denotes the other  
 
Name equivalence: If type names are treated as standing for themselves, the first 
two conditions above lead to name equivalence of type expressions.   
Example 1:  in the Pascal fragment  

type p = ↑node;  
        q = ↑node;  
var x : p;   
      y : q;  

  x and y are structurally equivalent, but not name-equivalent. 
 
Example 2:  Given the declarations   

Type t1 = Array [1..10] of integer;  
Type t2 = Array [1..10] of integer;  

– are they name equivalent? No because they have different type names.  
Example 3:  Given the declarations   

type vector = array [1..10] of real  
type weight = array [1..10] of real  
var x, y: vector; z: weight  

Name Equivalence: When they have the same name.  
– x, y have the same type; z has a different type.  
Structural Equivalence: When they have the same structure.  
– x, y, z have the same type.  
 

 



Translation Applications of Types  
From the type of a name, we can determine the storage needed for the name at run 
time, calculate the address denoted by an array reference, insert explicit type 
conversions, and choose the right version of an arithmetic operator.  
 
Types and storage layout for names are declared within a procedure or class. 
Actual storage is allocated at run time. Type of a name can used to determine the 
amount of storage needed for the name at run time. At compile time these amounts 
are used to assign each name a relative address. Local declarations are examined 
and relative addresses are laid out with respect to an offset from the start of a data 
area. The type and relative address are saved in the symbol-table entry for the 
name. Pointer is assigned for data for varying length like strings and dynamic 
arrays.  
  
Declarations  
The grammar        D →T id ; D | ε  

T → B C | record ' { ' D '}'  
B → int | float  
C → ε | [ n u m ] C  

declares just one name at a time; D- generates a sequence of declarations, T – 
generates basic, array or record types, C – for ‘component’,  generates strings of 
zero or more integers , each integer surrounded by brackets.   
 


