
  

 

Code Optimization 
 
In recent years, most research and development in the area of compiler design has 
been focused on the optimization phases of the compiler. Optimization is the 
process of improving generated code so as to reduce its potential running time 
and/or reduce the space required to store it in memory. Software designers are 
often faced with decisions which involve a space-time tradeoff – i.e., one method 
will result in a faster program, another method will result in a program which 
requires less memory, but no method will do both. However, many optimization 
techniques are capable of improving the object program in both time and space, 
which is why they are employed in most modern compilers. This results from 
either the fact that much effort has been directed toward the development of 
optimization techniques, or from the fact that the code normally generated is very 
poor and easily improved. 
 
Optimization techniques can be separated into two general classes: local and 
global.  
 Local optimization techniques normally are concerned with transformations on 
small sections of code (involving only a few instructions) and generally operate on 
the machine language instructions which are produced by the code generator.   
 Global optimization techniques are generally concerned with larger blocks of 
code, or even multiple blocks or modules, and will be applied to the intermediate 
form, atom strings, or syntax trees put out by the parser. 
 
Peephole Optimization 
Code generated by using the statement-by-statement code-generation strategy 
contains redundant instructions and suboptimal constructs. Therefore, to improve 
the quality of the target code, optimization is required. Peephole optimization is 
an effective technique for locally improving the target code. Short sequences of 
target code instructions are examined and replacement by faster sequences 
wherever possible. Typical optimizations that can be performed are: 
 Elimination of redundant loads and stores 
 Elimination of multiple jumps 
 Elimination of unreachable code 
 Algebraic simplifications 
 Reducing for strength 
 Use of machine idioms 
 



  

 

Eliminating Redundant Loads and Stores 
If the target code contains the instruction sequence: 

1. MOV R, a  
2. MOV a, R  

We can delete the second instruction if it an unlabeled instruction. This is because 
the first instruction ensures that the value of a is already in the register R. If it is 
labeled, there is no guarantee that step 1 will always be executed before step 2. 
 
Eliminating Multiple Jumps 
If we have jumps to other jumps, then the unnecessary jumps can be eliminated in 
either intermediate code or the target code. If we have a jump sequence: 
goto  L 1 
... 
L 1:    goto  L 2 
Then this can be replaced by: 
       goto  L 2 
       ... 
L 1:    goto  L 2 
If there are now no jumps to L1, then it may be possible to eliminate the statement, 
provided it is preceded by an unconditional jump. Similarly, the sequence: 
if  a  <  b  goto  L 1 
       ... 
L 1:    goto  L 2 
can be replaced by: 
if  a  <  b  goto  L 2 
       ... 
L 1:    goto  L 2 
 
Eliminating Unreachable Code 
In computer programming, unreachable code is part of the source code of a 
program which can never be executed because there exists no control flow path to 
the code from the rest of the program.  
Unreachable code is sometimes also called dead code, although dead code may 
also refer to code that is executed but has no effect on the output of a program. 
 
Consider the following fragment of C code: 
 int foo (int iX, int iY) 
 { 
  return iX + iY; 



  

 

  int iZ = iX*iY; 
 } 
The definition int iZ = iX*iY; is never reached as the function returns before the 
definition is reached. Therefore the definition of iZ can be discarded. 
 
Algebraic Simplifications 
 
If statements like: 
a= a+0 
a=a*1 
 
are generated in the code, they can be eliminated, because zero is an additive 
identity, and one is a multiplicative identity. 
 
Reducing Strength 
Certain machine instructions are considered to be cheaper than others. Hence, if we 
replace expensive operations by equivalent cheaper ones on the target machine, 
then the efficiency will be better.  
For example, x2 
is invariable cheaper to implement as  x * x  than as a call to an exponentiation 
routine. Similarly, fixed-point multiplication or division by a power of two is 
cheaper to implement as a shift. 
 
Using Machine Idioms 
The target machine may have hardware instructions to implement certain specific 
operations efficiently. Detecting situations that permit the use of these instructions 
can reduce execution time significantly. For example, some machines have auto-
increment and auto-decrement addressing modes. Using these modes can greatly 
improve the quality of the code when pushing or popping a stack. These modes 
can also be used for implementing statements like  
a  =  a  + 1. 
Example: 
Post increment or pre-decrement addressing 
r++ , --r 
 
 
 
 
 



  

 

Code Generation 
 
The final phase in compiler model is the code generator. It takes as input the 
intermediate representation (IR) produced by the front end of the compiler, 
along with relevant symbol table information, and produces as output a 
semantically equivalent target program, as shown in figure below.  
 

 
Position of  Code Generator 

 
The requirements imposed on a code generator are severe. The target program 
must preserve the semantic meaning of the source program and be of high 
quality; that is, it must make effective use of the available resources of the target 
machine. Moreover, the code generator itself must run efficiently.  
The challenge is that, mathematically, the problem of generating an optimal target 
program for a given source program is undecidable; many of the subproblems 
encountered in code generation such as register allocation are computationally 
intractable. In practice, we must be content with heuristic techniques that generate 
good, but not necessarily optimal, code. Fortunately, heuristics have matured 
enough that a carefully designed code generator can produce code that is several 
times faster than code produced by a naive one. Compilers that need to produce 
efficient target programs, include an optimization phase prior to code 
generation. The optimizer maps the IR into IR from which more efficient code 
can be generated. In general, the code optimization and code-generation phases 
of a compiler, often referred to as the back end, may make multiple passes over 
the IR before generating the target program. The most important criterion for a 
code generator is that it produces correct code. 
 
1. Input to the Code Generator  
 
The input to the code generator is  
 The intermediate representation of the source program produced by the front end,  
 The information in the symbol table that is used to determine the run-time 
addresses of the data objects denoted by the names in the IR.  
 



  

 

The many choices for the IR include three-address representations such as 
quadruples, triples, indirect triples; virtual machine representations such as 
bytecodes and stack-machine code; linear representations such as postfix 
notation; and graphical representations such as syntax trees and DAG's.   
 
Code generator main tasks: 
 Instruction selection 
 Register allocation and assignment 
 Insrtuction ordering 
 
Instruction Selection 
 
The code generator must map the IR program into a code sequence that can be 
executed by the target machine. The complexity of performing this mapping is 
determined by factors such as  
 The level of  the IR  
 The nature of  the instruction-set architecture  
 The desired quality of the generated code. 
 
 If the IR is high level, the code generator may translate each IR statement into a 
sequence of machine instructions using code templates. Such statement-by-
statement code generation, however, often produces poor code that needs further 
optimization. If the IR reflects some of the low-level details of the underlying 
machine, then the code generator can use this information to generate more 
efficient code sequences. 
 
 The nature of the instruction set of the target machine has a strong effect on 
the difficulty of instruction selection. For example, the uniformity and 
completeness of the instruction set are important factors. If the target machine 
does not support each data type in a uniform manner, then each exception to the 
general rule requires special handling. On some machines, for example, floating-
point operations are done using separate registers.  
Instruction speeds and machine idioms are other important factors. If we do not 
care about the efficiency of the target program, instruction selection is 
straightforward. For each type of three-address statement, we can design a code 
skeleton that defines the target code to be generated for that construct.  
 
For example, every three-address statement of the form x = y + z, where x, y, 
and z are statically allocated, can be translated into the code sequence 



  

 

LD  R0, y               // R0  =  y  (load y into register R0)  
ADD R0, R0, z      //  R0  = R0  +  z  (add z to R0 )  
ST  x,  R0             // x  =  R0  (store R0  into x)  
 
This strategy often produces redundant loads and stores. For example, the 
Sequence of three-address statements  
 
a = b + c 
d = a + e 
 
would be  translated into  
LD  R0, b                // R0  =  b  
ADD  R0, R0,  c     // R0  =  R0  +  c  
ST  a, R0                // a  =  R0  
LD  R0,  a              // R0  =  a  
ADD  R0, R0, e     // R0  =  R0  +  e  
ST  d,  R0              // d  =  R0 
 
Here, the fourth statement is redundant since it loads a value that has just been 
stored, and so is the third if a is not subsequently used. 
 
 The quality of the generated code is usually determined by its speed and size. 
On most machines, a given IR program can be implemented by many different 
code sequences, with significant cost differences between the different 
implementations. A naive translation of the intermediate code may therefore lead 
to correct but unacceptably inefficient target code.  
For example, if the target machine has an “increment” instruction (INC), then the 
three-address statement a = a + 1 may be implemented more efficiently by the 
single instruction INC a, rather than by a more obvious sequence that loads a into a 
register, adds one to the register, and then stores the result  back into a: 
 
LD  R0, a                   // R0 =  a  
ADD R0,  R0,  1      // R0 =  R0 +  1  
ST  a, R0                   // a =  R0 
 
 
 
 
 



  

 

Register Allocation 
 
A key problem in code generation is deciding what values to hold in what 
registers. Registers are the fastest computational unit on the target machine, 
but we usually do not have enough of them to hold all values. Values not held in 
registers need to reside in memory. Instructions involving register operands are 
invariably shorter and faster than those involving operands in memory, so efficient 
utilization of registers is particularly important.  
The use of registers is often subdivided into two subproblems:  
1. Register allocation, during which we select the set of variables that will reside 
in registers at each point in the program.  
2. Register assignment, during which we pick the specific register that a variable 
will reside in. 
 
 
Evaluation Order 
 
The order in which computations are performed can affect the efficiency of the 
target code. Some computation orders require fewer registers to hold 
intermediate results than others. Initially, we shall avoid the problem by 
generating code for the three-address statements in the order in which they have 
been produced by the intermediate code generator.   
 


