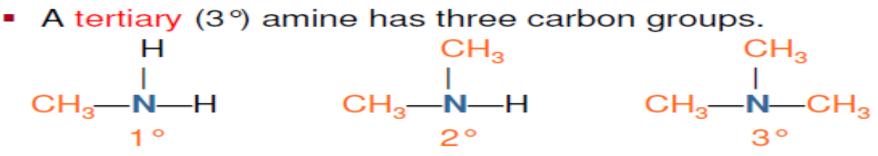

Amines

Are derivatives of ammonia NH3.


Contain N attached to one or more alkyl or aromatic groups.

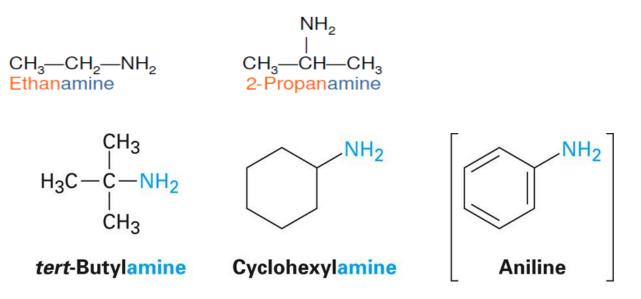
Classification of Amines

Amines are classified as primary, secondary, or tertiary.

- In a primary (1°) amine, one carbon group is bonded to the nitrogen atom.
- A secondary (2°) amine has two carbon groups.

Naming Simple Amines

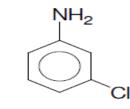
Simple amines

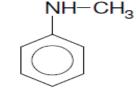

- Are named as alkylamines.
- List the names of the alkyl groups bonded to the N atom in alphabetical order in front of *amine*.

 $\begin{array}{c} CH_{3}--CH_{2}--NH_{2} & ethylamine \\ CH_{3}--NH--CH_{3} & dimethylamine \\ & CH_{3} \\ --CH_{3} & ethyldimethylamine \end{array}$

IUPAC Names of Amines

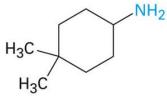
In the IUPAC system,


- Amines are named as alkanamines.
- The -e in the alkane name of the longest chain is changed to -amine.
- The chain is numbered to locate the amine group and substituents.



Aromatic Amines

The amine of benzene is aniline. Alkyl groups on the N use the prefix N- and the alkyl name.


Aniline

3-chloroaniline

N-methylaniline

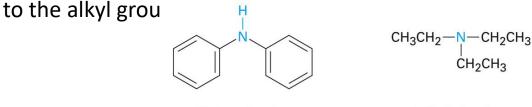
IUPAC Names – "-amine" Suffix

The suffix -*amine* can be used in place of the final -*e* in the name of the parent compound

4,4-Dimethylcyclohexanamine

H₂NCH₂CH₂CH₂CH₂NH₂

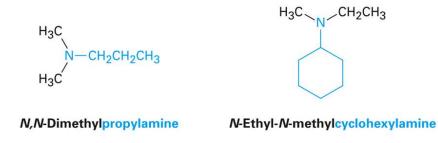
1,4-Butanediamine


IUPAC Names – Amines With More Than One Functional Group

Consider the —NH₂ as an *amino* substituent on the parent molecule

IUPAC Names – Multiple Alkyl Groups

Symmetrical secondary and tertiary amines are named by adding the prefix di- or tri-

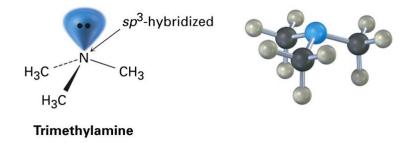

Diphenylamine

Triethylamine

IUPAC Names – Multiple, Different Alkyl Groups

Named as *N*-substituted primary amines

Largest alkyl group is the parent name, and other alkyl groups are considered *N*- ■ substituents



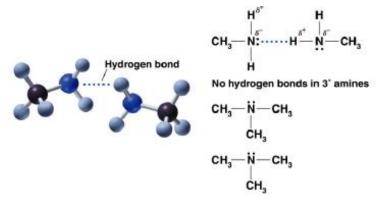
Properties of Amines

Bonding to N is similar to that in ammonia

N is sp^3 -hybridized

C−N−C bond angles are close to 109° tetrahedral value

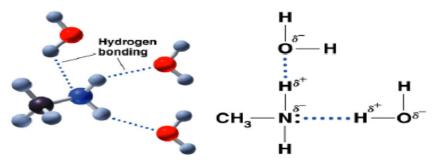
Boiling Points of Amines, Alcohols, and Alkanes


The boiling points of amines are

- Higher than alkanes.
- Lower than alcohols of similar mass.

Hydrogen Bonding for Amines

The polar N-H bond


- Provides hydrogen bonding in 1 °and 2 ° amines, but not 3 °.
- In amines is not as polar as the O-H bonds in alcohols.

Solubility in Water

Amines are soluble in water

- If they have 1-5 carbon atoms.
- Because the N atom in smaller amines forms hydrogen bonds with the polar O-H bond in water.

Amines React as Bases

Amines are

- Bronsted-Lowry bases that attract a H⁺ from H₂O to the N atom.
- Weak bases in water.

 $NH_3 + H_2O \longrightarrow NH_4^+ + OH^$ ammonium hydroxide $CH_3 - NH_2 + H_2O \longrightarrow CH_3 - NH_3^+ + OH^$ methylammonium hydroxide

Neutralization forms Amine Salts

An amine salt


- Forms when an amine is neutralized by acid.
- Is named by replacing the *amine* part of the name with *ammonium* followed by the name of the negative ion.

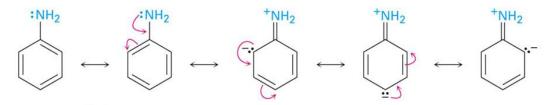
 $CH_3 - NH_2 + HCI \rightarrow CH_3 - NH_3 + CI - Methylamine CH_3 - NH_3 + CI - Methylammonium chloride$

Basicity of Amines

The lone pair of electrons on nitrogen makes amines basic and nucleophilic

They react with acids to form acid–base salts and they react with electrophiles

An amine An acid (a Lewis base) A salt

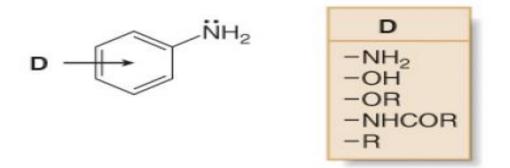

Relative Basicity

Amines are stronger bases than alcohols, ethers, or water

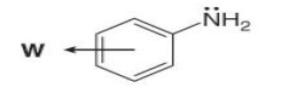
Amines establish an equilibrium with water in which the amine becomes protonated and hydroxide is produced

Basicity of Substituted Arylamines

The N lone-pair electrons in arylamines are delocalized by interaction with the aromatic ring π electron system and are less able to accept H⁺ than are alkylamines


Substituted Arylamines

Can be more basic or less basic than aniline


Electron-donating substituents (such as $-CH_3$, $-NH_2$, $-OCH_3$) increase the **basicity of the corresponding arylamine**

Electron-withdrawing substituents (such as —Cl, —NO₂, —CN) decrease arylamine basicity

• Electron donors increase basicity.

• Electron withdrawers decrease basicity.

$$\begin{array}{c} \textbf{W} \\ \textbf{-X} & -CN \\ \textbf{-CHO} & -SO_3H \\ \textbf{-COR} & -NO_2 \\ \textbf{-COOR} & -NO_2 \\ \textbf{-COOH} & -NR_3^+ \end{array}$$