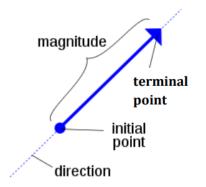
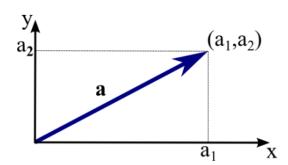
Vectors

1. Vectors in Two Dimensions

In order to distinguish vectors from scalar, we will se hod-faced letters, to denote vectors; for example, **a**, **b**, **U**, and so forth. Vectors have both, magnitude and direction, while scalars have only magnitude. For that, we will represent vectors by arrows. The magnitude of the vector **a** is the length of the arrow, and its direction is the direction of the arrow.





When the vectors intial point is placed at the origin, we write:

$$a = (a_1, a_2)$$

to denote the vector from O to R.

Length of a:

The magnitude of a is the distance from 0 to R, and is denoted by $\|a\|$:

$$\|\boldsymbol{a}\| = \sqrt{{a_1}^2 + {a_2}^2}$$

Equality:

The vectors $\mathbf{a}=(a_1,a_2)$ and $\mathbf{b}=(b_1,b_2)$ are equal if and only if $a_1=b_1$ and $a_2=b_2$

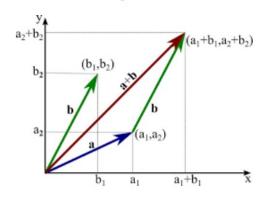
Zero:

The zero vector is the vector of length zero. As a result, if its intial point is at the origin, then so its terminal point, so that

$$\mathbf{0} = (0,0)$$

Addition:

If the intial point of \mathbf{b} is placed at the terminal point of \mathbf{a} , then $\mathbf{a}+\mathbf{b}$ is the vector drawn from the intial point of \mathbf{a} to the terminal point of \mathbf{b} .



$$a + b = (a_1 + b_1, a_2 + b_2)$$

Multiplication of a vector by a scalar:

Let **a** be a vector, and γ be a scalar (real number). If $\gamma > 0$, then γa or $a\gamma$ is the vector whose direction is the same as that of **a** and whose length id γ times the length of **a**.

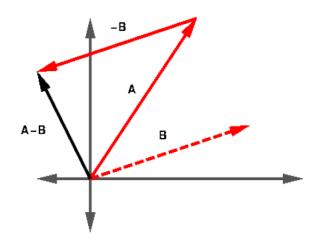
If $\gamma < 0$, then the direction of γa is opposite to that of a and whose length is $|\gamma|$ times the length of a.

If $\gamma = 0$, or $\mathbf{a} = 0$, then $\gamma \mathbf{a}$ is the zero vector.



Subtraction:

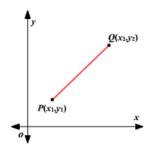
The vector $\mathbf{a} - \mathbf{b}$ is drawn from the terminal point of \mathbf{b} to the terminal point of \mathbf{a} .



$$a - b = (a_1 - b_1, a_2 - b_2)$$

Finding Vectors using their end points:

The vector whose intial point is $P(p_1, p_2)$ and terminal point is $Q(q_1, q_2)$ denoted by \overrightarrow{PQ} , can be found by subtracting the coordinates of its intial point from the corresponding coordinates of its terminal point:



$$\overrightarrow{PQ} = (q_1, q_2) - (p_1, p_2) = (q_1 - p_1, q_2 - p_2)$$

The Dot Product:

we have two ways to multiply a vector by another. The first type is dot product which gives a scalar as a result of multiply two vectors together.

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

Relation between dot product and length of a vector:

When we multiply a vector by itself using dot product, we get

$$\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 = ||a||^2$$

Also, if
$$\gamma$$
 is a scalar, then $\|\gamma \boldsymbol{a}\| = \|\gamma a_1, \gamma a_2\| = \sqrt{\gamma^2 a_1^2 + \gamma^2 a_2^2} = |\gamma| \sqrt{a_1^2 + a_2^2} = |\gamma| \|a\|$

Unit Vectors:

Any vector of length one is called a unit vector. To determine a unit vector of length one in the direction of a vector **a** we use:

$$u = \frac{a}{\|a\|}$$

Geometrical Interpolation of Dot Product:

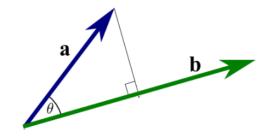
Let **a** and **b** be nonzero vectors which have the same initial point. And let θ be the angle between them s.t. $0 \le \theta \le \pi$. Use the law of cosines from trigonometry for the triangle below:

$$\|\boldsymbol{a} - \boldsymbol{b}\|^2 = \|\boldsymbol{a}\|^2 + \|\boldsymbol{b}\|^2 - 2\|\boldsymbol{a}\|\|\boldsymbol{b}\|\cos\theta$$

We obtain

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos\theta$$

We can use the relation above to find the angle between vectors as follow:



$$cos\theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} \cdot \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \boldsymbol{u} \cdot \boldsymbol{v}$$

where \boldsymbol{u} and \boldsymbol{v} are unit vectors of \boldsymbol{a} and \boldsymbol{b} respectively.

Orthogonal Vectors:

The vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{0}$

Unit Coordinate Vectors:

Unit vectors in the direction of x-axis and y-axis are important enough so that the special symbols i and j are reversed for them. Their components are

$$i = (1,0), j = (0,1)$$

Also, it is readily to verify that

$$i. i = 1,$$
 $j. j = 1,$ $i. j = j. i = 0$

Q: Prove that i and j are orthogonal?

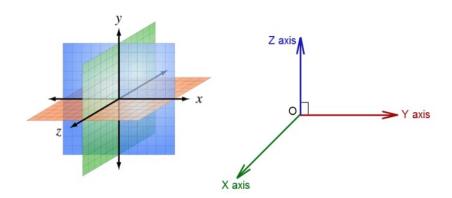
We can express a given vector $\mathbf{a} = (a_1, a_2)$ in terms of \mathbf{i} and \mathbf{j} , we have

$$\mathbf{a} = (a_1, a_2) = a_1 \mathbf{i} + a_2 \mathbf{j}$$

Triangle Inequality:

$$||a+b|| \le ||a|| + ||b||$$

2. Vectors in Three Dimensions



A three-dimensional vector \mathbf{a} may be thought of as an arrow in three-dimensional xyz-space. Let us place the initial point at the origin, then the terminal point coincides with some point P. If $P(a_1, a_2, a_3)$, then we write

$$\mathbf{a} = (a_1, a_2, a_3),$$

The length of a: $||a|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Equality: The vectors $\mathbf{a} = \mathbf{b}$ if and only if $a_1 = b_1$, $a_2 = b_2$ and $a_3 = b_3$

Zero: The zero vector is $\mathbf{0} = (0,0,0)$

Addition: $a + b = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$

Multiplication of a vector by a scalar: $\gamma a = (\gamma a_1, \gamma a_2, \gamma a_3)$

Subtraction: $a - b = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$

Dot Product: $a \cdot b = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

Unit Vectors: $u = \frac{a}{\|a\|}$

There are now three unit coordinate vectors, denoted by

$$\mathbf{i} = (1,0,0), \mathbf{j} = (0,1,0), \mathbf{k} = (0,0,1)$$

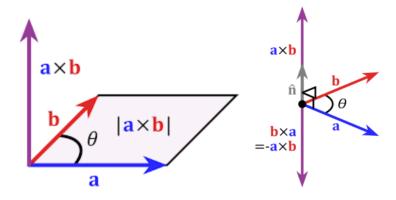
In terms of these vectors, we can write the vector $\mathbf{a} = (a_1, a_2, a_3)$ as

$$\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k},$$

Cross Product:

In dot Product, we get a scalar as a result of multiplication. In cross product, we multiply to vectors and get another vector as a result.

Let \boldsymbol{a} and \boldsymbol{b} be nonzero vectors, and $\boldsymbol{\theta}$ be the angle between them, s.t. $0 \le \boldsymbol{\theta} \le \pi$. Then $\boldsymbol{a} \times \boldsymbol{b}$ is defined to be the vector with the following properties:



- 1. $\mathbf{a} \times \mathbf{b}$ is perpendicular at to both \mathbf{a} and \mathbf{b}
- 2. The magnitude of $\mathbf{a} \times \mathbf{b}$ is given by

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin\theta$$

3. The direction of $\mathbf{a} \times \mathbf{b}$ is chosen so that when a is rotated into b through the angle θ , then \mathbf{a} , \mathbf{b} , $\mathbf{a} \times \mathbf{b}$ form a right handed system of vectors.