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Solution of Linear System by Matrices:

Cramer’s Rule

THEOREM If a system of n linear equations in n variables has a coefficient matrix with a nonzero
Cramer’s Rule  determinant |A|, then the solution of the system is given by

- det(A,) _ det(A,) B det(A,)
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where the ith column of A, is the column of constants in the system of equations.

" EXAMPLE

Use Cramer’s Rule to solve the system of linear equations for x.
—x + 2y —3z =8
2x + z=0
3x—4y +4z =2

SOLUTION

-1 2 -3
Al=| 2 o 1]=10
3 -4 4

Because |A| # 0, you know the solution is unique, and Cramer’s Rule can be applied to
solve for x, as follows.
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_ lA4] Az |A3]
= , = , Z =
|A |Al |A|
1 2 -3 1 1 -3 1 2 1
A =lo 0 1],A2= 2 0 1].,4,=[2 o0 0]
2 —4 4 3 2 4 3 —4 2
B 2 —3
B % Y ax-l! 2
. — B —4 = 2 -4l _()(=1)(-=8) _4
‘ 10 10 10 5
-1 1 -3
2 0 1
13 2 4| _-15 -3
Y= 10 T,
-1 2 1
2 0 0
3 -4 2|l_—16_-8
zZ = = =
10 10 5
EXAMPLE

Use Cramer’s Rule to solve the system of linear equations for x.

20 +y
3r — 4y

on
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Calculating A = ' g _}1 ' = —11. Since A # 0 we can proceed with Cramer's solution.
2 1 117 1 112 7
A"3—4‘_‘” 3"_35—4‘* ?”_Z" 5
. (—28 —5) (10 — 21) ol —33 5 —11 1
e r=————", y=-—"-— implying: v =——=3, y=—=1
—1) YT ping 110 YT
Exercises

Use Cramer’s rule to solve the system

1 — 229 +23 = 3
206, +ax9—2x3 = 5
3xy —x9 + 225 = 12.

Gaussian Elimination method

We can use Gauss Elimination Method to solve the system of linear
equation as see in the following example

Example : Solve the following systems of linear equations by
Gaussian elimination method:

2x—2y+3z=2

x+2y—z=3

3x—y+2z=1
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Solution:
Consider the matrix equation (augmented matrix): ( R= row)

2 -2 3|27 AL
1 2 -1|3| R
3 -1 2|1 R3
2 -2 3|2 1 2 -1]3
1 2 —-1|3|Rl swap R2 2 -2 3|2
3 -1 2|1 3 -1 21
1 2 -1]3 1 2 -1]3
2 —2 3 |2 | B2REEL 1o 6 5|4
3 -1 2|1 J 3 -1 2|1

[2—2(1)] [=2-2(2)] [+3-2(=1)] [+2-2(3)]

=0 =6 =5 =4

1 2 -1]3 1 2 -1] 3
0 -6 5 |-4 |22 1o 6 5 |-4
3 -1 2|1 0 -7 5 |-8

1

[B—-3(1)] [F1-3(2)] [+2-3(=1)] [+1—-3(3)]
-0 =7 =5 =-8

1 2 —1| 3 1 2 —1] 3
0 —6 5 |—4 | E2ORSTRZ 0O 6 5 | —4
o -7 5 |8 l o o —5|-20

[0 0] [6(—7) —7(-6)] [6(5) —7(5)] [6(—-8) — 7(—4)]
=0 =0 —5 =20
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The equivalent system is written by using the echelon form:

x+2y-z=3 ... (1)
-by+5z=-4 ... (2)
-5z=-20 ... (3)

From eq.3: [-bz = —20 = z=4]

By applying the value of z in (2), we can get:
—6y+5(4) = 4= —6y+20=—-4—= y=4

By applying the value of y and z in (1), we can get:
x+24)—(4)=3=x+4=3 = x=-1

Hence the solution is (-1, 4, 4)

Example : Solve the following systems of linear equations by Gaus-
sian elimination method:

x1—2x+x3=0

2x1+x0—3x3 =5

4x1 — Txo +x3 = —1

Solution:
The augmented matrix which represents this system is:

RN

1 2 1|01 R

[21—3 5}@

4 -7 1 -1 &3
1 -2 1 2 110
2 1 -3| 5 | 2BR2 0 5 -5|5
4 —7 1 |-1 1 4 -7 1 |-1

(—2(1) +2)] [-2(=2) +1] [-2(1) + (=3)] [-2(0) + 5]
=0 =5 =5 —5
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0 = —3 =
1 -2 10 1 -2 1]o0
0 5 5|5 R2 swap R3 0 1 -3|-1
B
0 1 -3|-1 0 5 -5|5
1 2 1]0 1 -2 1]0
0 1 -—3|-—1 | BR2R3, 0 1 -3|-1
0 5 -5|5 0 10 | 10

[=5(0) + (0))] tiny  [-5(1) + (5)] [=5(=3) + (=5)] [-5(=1) + (5)]
=0 =0 =10 =10

The equivalent system is written by using the echelon form:

x1—2x+x3=0 ... (1)
. 3X3 | L (2)
10x.=10 @ cou (3)

Fromeq.3: 10x3 =10 = x3 =1

By applying the value of x3 in (2), we can get:

X —3x3=-1— [X2—3(1): —1]:>X2:2

By applying the value of x» and x3 in (1), we can get:
x1—2(2)+1=0=[x-3=0=x =3

The solution of this system is therefore (xi,x,x3) = (3, 2, 1)



