Solved Examples: Digital Electronics

Ex. 1) From the following expression fined:

1. Canonical SOP, POS forms.
2. Standard SOP, POS expressions.
3. The minimal SOP form using K-map.
4. Truth table for the standard SOP, POS expressions.

$$
F(A, B, C, D)=(\bar{A}+\bar{B}+\bar{C}) \cdot(A+\bar{B}) \cdot(A+B+\bar{C})
$$

Sol.

1. To find the canonical SOP, POS we must find the missing variables in POS expression:

$\overline{\boldsymbol{A}}$	$\overline{\boldsymbol{B}}$	$\overline{\boldsymbol{C}}$	\boldsymbol{D}	\boldsymbol{A}	$\overline{\boldsymbol{B}}$	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{A}	\boldsymbol{B}	$\overline{\boldsymbol{C}}$	\boldsymbol{D}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
				$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$				

Then Canonical POS is:

$$
F(A, B, C, D)=\prod 2,3,4,5,6,7,14,15
$$

Canonical SOP is:
$F(A, B, C, D)=\sum 0,1,8,9,10,11,12,13$
2. Standard SOP is:

$$
\begin{aligned}
F(A, B, C, D) & =\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C \bar{D}+A B \bar{C} \bar{D} \\
& +A \bar{B} C D+A B \bar{C} D
\end{aligned}
$$

Standard POS is

$$
\begin{aligned}
& F(A, B, C, D)=(A+B+\bar{C}+D) \cdot(A+B+\bar{C}+\bar{D}) \cdot(A+\bar{B}+C+D) . \\
& (A+\bar{B}+C+\bar{D}) \cdot(A+\bar{B}+\bar{C}+D) \cdot(A+\bar{B}+\bar{C}+\bar{D}) \cdot(\bar{A}+\bar{B}+\bar{C}+D) . \\
& (\bar{A}+\bar{B}+\bar{C}+\bar{D})
\end{aligned}
$$

Solved Examples: Digital Electronics

3. Minimal expression using K-map:

Min SOP: $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})=\boldsymbol{A} \overline{\boldsymbol{B}}+\boldsymbol{A} \overline{\boldsymbol{C}}+\overline{\boldsymbol{B}} \overline{\boldsymbol{C}}$
$\operatorname{Min} \operatorname{POS}: \overline{\boldsymbol{F}}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})=\boldsymbol{C}+\overline{\boldsymbol{A}} \boldsymbol{B}$

$$
\begin{aligned}
& F(A, B, C, D)=\overline{C+\bar{A} B} \\
& F(A, B, C, D)=(C) \cdot(A+\bar{B})
\end{aligned}
$$

4. Truth table for standard SOP,POS expressions:

Inputs				Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Solved Examples: Digital Electronics

Ex. 2) If the 7-bit hamming code word received by a receiver is (1011000). Assuming the even parity state whether the received code word is correct or wrong. If wrong locate the bit having error?
Sol.

P_{1}	P_{2}	$\mathrm{~d}_{1}$	P_{3}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	$\mathrm{~d}_{4}$
1	0	1	1	0	0	0

$$
\begin{aligned}
& A=P_{1} \oplus d_{1} \oplus d_{2} \oplus d_{4}=1 \oplus 1 \oplus 0 \oplus 0=0 \\
& B=P_{2} \oplus d_{1} \oplus d_{3} \oplus d_{4}=\mathbf{0} \oplus 1 \oplus 0 \oplus 0=1 \\
& C=P_{3} \oplus d_{2} \oplus d_{3} \oplus d_{4}=1 \oplus 0 \oplus 0 \oplus 0=1
\end{aligned}
$$

$\mathrm{CBA}=(110)_{2}=(6)_{10}$
The error is found in the $6^{\text {th }}$ bit (i.e. d_{1})
The correct message is (1011010)
Ex. 3) Determine the simplify expression by the truth table below using Karnaugh map method?

Sol.
$F(A, B, C)=A B+\bar{B} \bar{C}$

Solved Examples: Digital Electronics

Ex. 4) Draw the waveform to shift the number $\mathbf{0 0 1 1 0}$ into the SISO shift register (built from DF.F.). Assume the register is initially cleared (all 0's)?

Sol.

Ex.5)
Simplify the following expressions using the rules of Boolean algebra:

1. $Z(A, B, C)=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} \bar{C}$

Sol.

$$
\begin{aligned}
& Z(A, B, C)=\bar{A} \bar{B}(\bar{C}+C)+\bar{A} \bar{C} \\
& Z(A, B, C)=\bar{A} \bar{B}+\bar{A} \bar{C}=\bar{A}(\bar{B}+\bar{C}) \\
& Z(A, B, C)=\bar{A}(\overline{B \cdot C})=\overline{A+B C}
\end{aligned}
$$

2. $F(A, B, C, D)=(A \bar{B}(C+B D)+\bar{A} \bar{B}) C$

Sol.

$$
\begin{aligned}
F(A, B, C, D) & =(A \bar{B} C+\bar{A} \bar{B}) C=A \bar{B} C+\bar{A} \bar{B} C \\
& =\bar{B} C(A+\bar{A})=\bar{B} C
\end{aligned}
$$

Solved Examples: Digital Electronics

3. $Y(A, B, C)=A[B+C(A B+A C)]$

Sol.

$$
\begin{aligned}
& Y(A, B, C)=A[B+A B C+A C] \\
& Y(A, B, C)=A[B(\mathbf{1}+A C)+A C] \\
& Y(A, B, C)=A(B+A C) \\
& Y(A, B, C)=A B+A C=A(B+C)
\end{aligned}
$$

1. Ex.6) In a 7 -segment display, segment-b is activated for the digits $0,1,2$, $3,4,7,8,9$, as illustrated in the figure below. Since each digit can be represented by a BCD code, derive an SOP expression for segment-b using the variables ABCD and then minimize the expression using a K - map.

Sol.
The expression for segment-b is:
$b=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} C D+\bar{A} B \bar{C} \bar{D}+\bar{A} B C D+A \bar{B} \bar{C} \bar{D}+$ $A \bar{B} \bar{C} D$

Each term in the expression represents one of the digits in which segment-b is used. The Karnaugh map minimization is shown in the figure below. X's (don't care) are entered for those states that do not occur in the BCD code.

Solved Examples: Digital Electronics

From the K - map, the minimized expression for segment-b is:

$$
F(A, B, C, D)=A+\bar{B}+C D+\bar{C} \bar{D}
$$

Ex. 7) Design a synchronous counter that can count numbers (0, 4, 1, 3, 2, 7, 6, and 5) and repeat using T Flip Flop?

Sol.
No. of state $=N=2^{n}=2^{3}=8$
Max. of count $=\mathrm{N}-1=8-1=7$
State diagram

Present state				Next state				Input of F.F		
$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{T}_{\mathbf{C}}$	$\mathbf{T}_{\mathbf{B}}$	$\mathbf{T}_{\mathbf{A}}$		
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$		

F.F. input expressions using K-map

$\boldsymbol{T}_{c}=\boldsymbol{Q}_{c} \overline{\boldsymbol{Q}}_{b}+\overline{\boldsymbol{Q}}_{c} \overline{\boldsymbol{Q}}_{A}$

$\boldsymbol{T}_{\boldsymbol{B}}=\boldsymbol{Q}_{c} \boldsymbol{Q}_{\boldsymbol{Q}} \overline{\boldsymbol{Q}}_{\boldsymbol{A}}+\overline{\boldsymbol{Q}}_{c} \overline{\boldsymbol{Q}}_{\boldsymbol{B}} \boldsymbol{Q}_{A}$

Solved Examples: Digital Electronics

Logic circuit designed

Ex. 8) Design a synchronous counter that can count numbers (0, 1, 3, 2, 6, 4, 5, and 7) and repeat using JK Flip Flops?
Sol.
No. of state $=N=2^{n}=2^{3}=8$
Max. of count $=\mathrm{N}-1=8-1=7$

Present state				Next state									Input of F.F.					
$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{J C}_{\mathbf{C}}$	$\mathbf{K}_{\mathbf{C}}$	$\mathbf{J}_{\mathbf{B}}$	$\mathbf{K}_{\mathbf{B}}$	$\mathbf{J}_{\mathbf{A}}$	$\mathbf{K}_{\mathbf{A}}$							
0	0	0	0	0	1	0	X	0	X	1	X							
0	0	1	0	1	1	0	X	1	X	X	0							
0	1	1	0	1	0	0	X	X	0	X	1							
0	1	0	1	1	0	1	X	X	0	0	X							
1	1	0	1	0	0	X	0	X	1	0	X							
1	0	0	1	0	1	X	0	0	X	1	X							
1	0	1	1	1	1	X	0	1	X	X	0							
1	1	1	0	0	0	X	1	X	1	X	1							

State diagram

Solved Examples: Digital Electronics

F.F. input expressions using K-map

Counter circuit diagram

Solved Examples: Digital Electronics

Ex. 9) For an asynchronous counter in figure below, draw the timing diagram for (6 Clock) and find which numbers this counter can count. Begin with counter cleared?

Sol.

Ex. 10)For an asynchronous counter in figure below, draw the timing diagram for ($\mathbf{9}$ Clock) and find which numbers this counter can count. Begin with counter cleared?

Solved Examples: Digital Electronics

Ex.11) From the following expression fined:

1. Canonical POS form.
2. Standard SOP, POS expressions.
3. The minimal SOP, POS forms using K-map.
4. Truth table for the standard SOP, POS expressions.

$$
F(A, B, C, D)=\sum(\mathbf{0}, \mathbf{1}, \mathbf{2}, 5,8,9,10)
$$

Sol.

1. Canonical POS is:

$$
F(A, B, C, D)=\Pi 3,4,6,7,11,12,13,14,15
$$

2. Standard SOP is:

$$
\begin{aligned}
F(A, B, C, D) & =\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} D+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A B \bar{C} \bar{D} \\
& +A \bar{B} C \bar{D}
\end{aligned}
$$

Standard POS is

$$
\begin{aligned}
& F(A, B, C, D)=(A+B+\bar{C}+\bar{D}) \cdot(A+\bar{B}+C+D) \cdot(A+\bar{B}+\bar{C}+D) . \\
& (A+\bar{B}+\bar{C}+\bar{D}) \cdot(\bar{A}+B+\bar{C}+\bar{D}) \cdot(\bar{A}+\bar{B}+C+D) \cdot(\bar{A}+\bar{B}+C+\bar{D}) \cdot \\
& (\bar{A}+\bar{B}+\bar{C}+D) \cdot(\bar{A}+\bar{B}+\bar{C}+\bar{D})
\end{aligned}
$$

3. Minimal expression using K-map:

Min. SOP:

$$
F(A, B, C, D)=\bar{B} \bar{C}+\bar{A} \bar{C} \bar{D}+\bar{B} \bar{D}
$$

Min. POS:

$$
\begin{aligned}
& \bar{F}(A, B, C, D)=A B+C D+B \bar{D} \\
& F(A, B, C, D)=(\overline{A B+C D+B \bar{D}}) \\
& F(A, B, C, D)=(\bar{A}+\bar{B})(\bar{C}+\bar{D})(\bar{B}+D)
\end{aligned}
$$

Solved Examples: Digital Electronics

4. Truth table for standard SOP,POS expressions:

Inputs				Output
A	B	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Solved Examples: Digital Electronics

Ex. 12) Design a full- subtractor logical circuit block diagram using half- subtractor?

Sol.

Ex. 13) Design an adder/subtractor circuit using full-adders and gates?

Sol.

Solved Examples: Digital Electronics

Ex.14) The waveforms in figure below are applied to the $\boldsymbol{J}, \boldsymbol{K}$ flipflop and clock inputs as indicated. Determine the \boldsymbol{Q} output, assuming that the flip-flop is initially RESET?

Sol.

Ex.15) For a negative edge-triggered \mathbf{J}-K flip-flop with the inputs in figure below, develop the \mathbf{Q} output waveform relative to the clock. Assume that Q is initially $\mathbf{L O W}$?

Solved Examples: Digital Electronics

Sol.

Ex. 16) Show the timing diagram if all of the flip-flops in the figure below are negative edge triggered. Begin with counter cleared?

Sol.

Solved Examples: Digital Electronics

Ex. 17) Put in canonical and standard SOP form from the following expression and draw the truth table, then determine canonical and standard POS form?

$$
F(A, B, C)=B+A C
$$

Sol.
To find the missing variables we do:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{A}	\mathbf{B}	\mathbf{C}
0	1	0	0	0	1
0	1	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

$$
\begin{aligned}
& \text { Standard SOP: } \\
& \begin{aligned}
F(A, B, C, D) & =\bar{A} \bar{B} C+\bar{A} B \bar{C}+\bar{A} B C+A \bar{B} C+A B \bar{C} \\
& +A B C
\end{aligned}
\end{aligned}
$$

Canonical SOP:

Inputs			Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
F(A, B, C, D)=\sum(1,2,3,5,6,7)
$$

Standard POS:

$$
F(A, B, C)=(A+B+C)(\bar{A}+B+C)
$$

Canonical POS:

$$
F(A, B, C, D)=\Pi(0,4)
$$

Solved Examples: Digital Electronics

Ex. 18) Using Boolean algebra techniques, simplify this expression:

$$
F=A B+A(B+C)+B(B+C)
$$

Sol.

$$
\begin{aligned}
& F=A B+A B+A C+B+B C \\
& F=A B+A C+B+B C \\
& F=A C+B(\mathbf{1}+\boldsymbol{A}+\boldsymbol{C}) \\
& F=A C+B
\end{aligned}
$$

Ex. 19) Simplify the following Boolean expression:

$$
F=\overline{A B+A C}+\bar{A} \bar{B} C
$$

Sol.

$$
\begin{aligned}
& F=(\overline{A B})(\overline{A C})+\bar{A} \bar{B} C \\
& F=(\bar{A}+\bar{B})(\bar{A}+\bar{C})+\bar{A} \bar{B} C \\
& F=\bar{A}+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& F=\bar{A}(\mathbf{1}+\bar{C})+\bar{A} \bar{B}+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& F=\bar{A}(\mathbf{1}+\bar{B})+\bar{B} \bar{C}+\bar{A} \bar{B} C \\
& F=\bar{A}(\mathbf{1}+\bar{B} C)+\bar{B} \bar{C} \\
& F=\bar{A}+\bar{B} \bar{C}
\end{aligned}
$$

Ex. 20) Design a synchronous counter that can count numbers (0, 7, 6, 3, 4, 2, 1, and 5) and repeat using T Flip Flop?
Sol.
No. of state $=N=2^{n}=2^{3}=8$
Max. of count $=\mathrm{N}-1=8-1=7$

Solved Examples: Digital Electronics

Present state				Next state			Transition F.F. table		
$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{T}_{\mathbf{C}}$	$\mathbf{T}_{\mathbf{B}}$	$\mathbf{T}_{\mathbf{A}}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	

F.Fs. input expressions using K-map

$$
\begin{aligned}
\boldsymbol{T}_{C} & =\overline{\boldsymbol{Q}}_{C} \boldsymbol{Q}_{A}+\boldsymbol{Q}_{C} \overline{\boldsymbol{Q}}_{A}+\overline{\boldsymbol{Q}}_{B} \\
\boldsymbol{T}_{C} & =\left(\boldsymbol{Q}_{C} \oplus \boldsymbol{Q}_{A}\right)+\overline{\boldsymbol{Q}}_{\boldsymbol{B}}
\end{aligned}
$$

$$
T_{B}=Q_{C} \bar{Q}_{B} Q_{A}+\bar{Q}_{C} \bar{Q}_{A}+\bar{Q}_{c} Q_{B}
$$

Solved Examples: Digital Electronics

$$
\boldsymbol{T}_{A}=\overline{\boldsymbol{Q}}_{A}+\boldsymbol{Q}_{B}
$$

Ex. 22) Simplify the function using K-map:

$$
F=(\bar{A}+\bar{B}+\bar{C})(B+D)
$$

Sol.

1. To substitute the values of the variables in K-map we must find the missing variables:

Solved Examples: Digital Electronics

$\overline{\boldsymbol{A}}$	$\overline{\boldsymbol{B}}$	$\overline{\boldsymbol{C}}$	\boldsymbol{D}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
				$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
				1	0	$\mathbf{1}$	$\mathbf{0}$

2. The standard POS for $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ is:

$$
F(A, B, C, D)=(A+B+C+D)(A+B+\bar{C}+A)(\bar{A}+B+C+D)(\bar{A}+B+
$$

$$
\bar{C}+D)(\bar{A}+\bar{B}+\bar{C}+D)(\bar{A}+\bar{B}+\bar{C}+\bar{D})
$$

3. Minimal expression using K-map:

Min. SOP:

$$
F(A, B, C, D)=\bar{A} B+B \bar{C}+\bar{C} D+\bar{B} D
$$

Ex. 23) Using NAND gate to design a logic circuit has three input variables A, B, and C, and the output will be high only when a majority of the input high?

$$
\begin{aligned}
& F(A, B, C)=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
& F(A, B, C)=\bar{A} B C+A \bar{B} C+A B(\bar{C}+C) \\
& F(A, B, C)=\bar{A} B C+A \overline{(B} C+B) \\
& F(A, B, C)=\bar{A} B C+A B+A C \\
& \quad F(A, B, C)=B(\bar{A} C+A)+A C \\
& F(A, B, C)=B(C+A)+A C \\
& F(A, B, C)=A B+B C+A C
\end{aligned}
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Solved Examples: Digital Electronics

Ex. 24) If the waveforms in figure below are applied to an active HIGH S-R latch, draw the resulting Q output waveform in relation to the inputs. Assume that Q starts LOW?

Sol.

Ex. 25) For a negative edge-triggered J-K flip-flop with the inputs in figure below, develop the Q output waveform relative to the clock. Assume that \mathbf{Q} is initially LOW?

Sol.

Solved Examples: Digital Electronics

Ex. 26) Determine the output waveforms in relation to the clock for \mathbf{Q}_{A}, \mathbf{Q}_{B}, and \mathbf{Q}_{c} in the circuit of Figure below and show the binary sequence represented by these waveforms. Begin with counter cleared?

Sol.

Ex. 27) 4-bit register (SRG 4) for the data input and clock waveforms in the figure below. The register initially contains all 1s. If the data input remains $\mathbf{0}$ after the fourth clock pulse, what is the state of the register after three additional clock pulses?

Sol.

