Ex. 1) From the following expression fined:

- **1.** Canonical SOP, POS forms.
- 2. Standard SOP, POS expressions.
- 3. The minimal SOP form using K-map.
- 4. Truth table for the standard SOP, POS expressions.

$$F(A, B, C, D) = (\overline{A} + \overline{B} + \overline{C}) \cdot (A + \overline{B}) \cdot (A + B + \overline{C})$$

Sol.

1. To find the canonical SOP, POS we must find the missing variables in POS expression:

Ā	\overline{B}	\overline{C}	D	A	\overline{B}	С	D	A	B	\overline{C}	D
1	1	1	0	0	1	0	0	0	0	1	0
1	1	1	1	0	1	0	1	0	0	1	1
				0	1	1	0				
				0	1	1	1				

Then Canonical **POS** is:

 $F(A, B, C, D) = \prod 2, 3, 4, 5, 6, 7, 14, 15$

Canonical SOP is:

 $F(A, B, C, D) = \sum 0, 1, 8, 9, 10, 11, 12, 13$

2. Standard SOP is:

 $F(A, B, C, D) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + AB\overline{C}\overline{D} + AB\overline{C}\overline{D} + AB\overline{C}\overline{D}$ $+ A\overline{B}CD + AB\overline{C}D$

Standard POS is

 $F(A, B, C, D) = (A + B + \overline{C} + D) \cdot (A + B + \overline{C} + \overline{D}) \cdot (A + \overline{B} + C + D) \cdot (A + \overline{B} + C + \overline{D}) \cdot (A + \overline{B} + \overline{C} + D) \cdot (A + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + D) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$

3. Minimal expression using K-map:

Min SOP: $F(A, B, C, D) = A\overline{B} + A\overline{C} + \overline{B}\overline{C}$ Min POS: $\overline{F}(A, B, C, D) = C + \overline{A}B$ $F(A, B, C, D) = \overline{C + \overline{A}B}$ $F(A, B, C, D) = (C).(A + \overline{B})$

4. Truth table for standard **SOP,POS** expressions:

	Inp	puts		Output
Α	B	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Ex. 2) If the 7-bit hamming code word received by a receiver is

(1011000). Assuming the even parity state whether the received code word is correct or wrong. If wrong locate the bit having error? Sol.

P ₁	P ₂	d_1	P ₃	d ₂	d ₃	d_4
1	0	1	1	0	0	0

$$A = P_1 \oplus d_1 \oplus d_2 \oplus d_4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$B = P_2 \oplus d_1 \oplus d_3 \oplus d_4 = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{0} = \mathbf{1}$$

 $C = P_3 \oplus d_2 \oplus d_3 \oplus d_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $CBA = (110)_2 = (6)_{10}$

The error is found in the 6th bit (i.e. d₁)

The correct message is (1011010)

Ex. 3) Determine the simplify expression by the truth table below using Karnaugh map method?

Sol.

 $F(A, B, C) = AB + \overline{B}\overline{C}$

	A	B	C	F
1	0	0	0	1
	0	0	1	0
	0	1	0	0
-	0	1	1	0
1	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	1

Ex. 4) Draw the waveform to shift the number **00110** into the **SISO** shift register (built from **DF.F.**). Assume the register is initially cleared (**all 0's**)?

Sol.

Ex.5)

Simplify the following expressions using the rules of Boolean algebra:

1.
$$Z(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{AC}$$

Sol.
 $Z(A, B, C) = \overline{AB}(\overline{C} + C) + \overline{AC}$
 $Z(A, B, C) = \overline{AB} + \overline{AC} = \overline{A}(\overline{B} + \overline{C})$
 $Z(A, B, C) = \overline{A}(\overline{B \cdot C}) = \overline{A + BC}$
2. $F(A, B, C, D) = (A\overline{B}(C + BD) + \overline{AB})C$
Sol.

$$F(A, B, C, D) = (ABC + AB)C = ABC + ABC$$
$$= \overline{B}C(A + \overline{A}) = \overline{B}C$$

3.
$$Y(A, B, C) = A[B + C(AB + AC)]$$

Sol.
 $Y(A, B, C) = A[B + ABC + AC]$
 $Y(A, B, C) = A[B(1 + AC) + AC]$
 $Y(A, B, C) = A(B + AC)$

$$Y(A, B, C) = AB + AC = A(B + C)$$

1. **Ex.6**) In a 7-segment display, segment-b is activated for the digits 0, 1, 2, 3, 4, 7, 8, 9, as illustrated in the figure below. Since each digit can be represented by a BCD code, derive an SOP expression for segment-b using the variables ABCD and then minimize the expression using a K - map.

Sol.

The expression for segment-b is:

$$b = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}C\bar{D} + \bar{A}\bar{B}CD + \bar{A}B\bar{C}\bar{D} + \bar{A}BCD + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D}$$

Each term in the expression represents one of the digits in which segment-b is used. The Karnaugh map minimization is shown in the figure below. X's (don't care) are entered for those states that do not occur in the BCD code.

From the K - map, the minimized expression for segment-b is:

$$F(A, B, C, D) = A + \overline{B} + CD + \overline{C}\overline{D}$$

Ex. 7) Design a synchronous counter that can count numbers (0, 4, 1, 3, 2, 7, 6, and 5) and repeat using T Flip Flop?

Sol.

No. of state = $N = 2^n = 2^3 = 8$

Max. of count = N-1 = 8-1 = 7

State diagram

Pre	Present state			ext sta	ite	Input of F.F		
Qc	QB	QA	Qc	QB	QA	Tc	TB	TA
0	0	0	1	0	0	1	0	0
1	0	0	0	0	1	1	0	1
0	0	1	0	1	1	0	1	0
0	1	1	0	1	0	0	0	1
0	1	0	1	1	1	1	0	1
1	1	1	1	1	0	0	0	1
1	1	0	1	0	1	0	1	1
1	0	1	0	0	0	1	0	1

F.F. input expressions using K-map

Logic circuit designed

Ex. 8) Design a synchronous counter that can count numbers (0, 1, 3, 2, 6, 4, 5, and 7) and repeat using JK Flip Flops?Sol. State diagram

No. of state = $N = 2^n = 2^3 = 8$

Max. of count = N-1 = 8-1 = 7

Pre	sent s	tate	N	ext stat	te	Input of F.F.					
Qc	QB	QA	Qc	QB	QA	Jc	Kc	JB	KB	JA	KA
0	0	0	0	0	1	0	Х	0	Х	1	Х
0	0	1	0	1	1	0	Х	1	Х	Х	0
0	1	1	0	1	0	0	Х	Х	0	Х	1
0	1	0	1	1	0	1	Х	Х	0	0	Х
1	1	0	1	0	0	Х	0	Х	1	0	Х
1	0	0	1	0	1	Х	0	0	Х	1	Х
1	0	1	1	1	1	Х	0	1	Х	Х	0
1	1	1	0	0	0	Х	1	Х	1	Х	1

F.F. input expressions using K-map

Counter circuit diagram

Ex. 9) For an asynchronous counter in figure below, draw the timing diagram for (6 Clock) and find which numbers this counter can count. Begin with counter cleared?

Ex. 10)For an asynchronous counter in figure below, draw the timing diagram for (**9 Clock**) and find which numbers this counter can count. Begin with counter cleared?

Sol.

Ex.11) From the following expression fined:

- 1. Canonical POS form.
- 2. Standard SOP, POS expressions.
- **3.** The minimal SOP, POS forms using K-map.
- 4. Truth table for the standard SOP, POS expressions.

 $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$

Sol.

1. Canonical **POS** is:

 $F(A, B, C, D) = \prod 3, 4, 6, 7, 11, 12, 13, 14, 15$

2. Standard SOP is:

 $F(A, B, C, D) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D}$

```
Standard POS is
```

 $F(A, B, C, D) = (A + B + \overline{C} + \overline{D}) \cdot (A + \overline{B} + C + D) \cdot (A + \overline{B} + \overline{C} + D) \cdot (A + \overline{B} + \overline{C} + D) \cdot (A + \overline{B} + \overline{C} + D) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + D) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$

3. Minimal expression using K-map:

Min. **SOP**:

 $F(A, B, C, D) = \overline{B}\overline{C} + \overline{A}\overline{C}\overline{D} + \overline{B}\overline{D}$ Min. **POS**:

 $\overline{F}(A, B, C, D) = AB + CD + B\overline{D}$ $F(A, B, C, D) = (\overline{AB + CD + B\overline{D}})$ $F(A, B, C, D) = (\overline{A} + \overline{B})(\overline{C} + \overline{D})(\overline{B} + D)$

	Inj	puts		Output
Α	B	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

4. Truth table for standard SOP,POS expressions:

Ex. 12) *Design a full- subtractor logical circuit block diagram using half- subtractor?*

Sol.

Ex. 13) Design an adder/subtractor circuit using full-adders and gates?

Sol.

Ex.14) The waveforms in figure below are applied to the J, K flip-flop and clock inputs as indicated. Determine the Q output, assuming that the flip-flop is initially RESET?

Sol.

Ex.15) For a negative edge-triggered **J-K** flip-flop with the inputs in figure below, develop the **Q** output waveform relative to the clock. Assume that **Q** is initially **LOW**?

Ex. 16) Show the timing diagram if all of the flip-flops in the figure below are negative edge triggered. Begin with counter cleared?

Ex. 17) Put in canonical and standard SOP form from the following expression and draw the truth table, then determine canonical and standard POS form?

F(A, B, C) = B + AC

Sol.

To find the missing variables we do:

A	B	С	Α	B	С
0	1	0	0	0	1
0	1	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Standard SOP:

 $F(A, B, C, D) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC + ABC$

Canonical SOP:

 $F(A, B, C, D) = \sum (1, 2, 3, 5, 6, 7)$

Standard POS:

 $F(A, B, C) = (A + B + C)(\overline{A} + B + C)$

Canonical POS:

 $F(A, B, C, D) = \prod (0, 4)$

]	Input	Output	
A	B	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ex. 18) Using Boolean algebra techniques, simplify this expression:

F = AB + A(B + C) + B(B + C)Sol. F = AB + AB + AC + B + BCF = AB + AC + B + BCF = A C + B(1 + A + C)F = A C + B**Ex. 19**) Simplify the following Boolean expression: $F = \overline{AB + AC} + \overline{ABC}$ Sol. $F = (\overline{AB})(\overline{AC}) + \overline{ABC}$ $F = (\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{A}\overline{B}C$ $F = \overline{A} + \overline{A}\overline{C} + \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{B}C$ $F = \overline{A}(1 + \overline{C}) + \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{B}C$ $F = \overline{A}(1 + \overline{B}) + \overline{B}\overline{C} + \overline{A}\overline{B}C$ $F = \overline{A}(1 + \overline{B}C) + \overline{B}\overline{C}$ $F = \overline{A} + \overline{B}\overline{C}$

Ex. 20) Design a synchronous counter that can count numbers (0, 7, 6, 3, 4, 2, 1, and 5) and repeat using T Flip Flop?
Sol.

No. of state = $N = 2^n = 2^3 = 8$

Max. of count = N-1 = 8-1 = 7

Pre	esent st	tate	N	Next state Transition F.F. t			Transition F.F. table		
Qc	QB	QA	Qc	QB	QA	T _C	TB	TA	
0	0	0	1	1	1	1	1	1	
1	1	1	1	1	0	0	0	1	
1	1	0	0	1	1	1	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	0	1	0	1	1	0	
0	1	0	0	0	1	0	1	1	
0	0	1	1	0	1	1	0	0	
1	0	1	0	0	0	1	0	1	

F.Fs. input expressions using K-map

 Q_A

 $T_B = Q_C \overline{Q}_B Q_A + \overline{Q}_C \overline{Q}_A + \overline{Q}_c Q_B$

Sol.

1. To substitute the values of the variables in K-map we must find the missing variables:

Ā	\overline{B}	\overline{C}	D	A	B	С	D
1	1	1	0	0	0	0	0
1	1	1	1	0	0	1	0
				1	0	0	0
				1	0	1	0

2. The standard POS for F (A, B, C, D) is:

 $F(A, B, C, D) = (A + B + C + D)(A + B + \overline{C} + A)(\overline{A} + B + C + D)(\overline{A} + B + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + \overline{D})$

 Minimal expression using K-map: Min. SOP:

 $F(A, B, C, D) = \overline{A}B + B\overline{C} + \overline{C}D + \overline{B}D$

Ex. 23) Using NAND gate to design a logic circuit has three input variables A, B, and C, and the output will be high only when a majority of the input high?

$E(A D C) = \overline{A} D C + A \overline{D} C + A \overline{D} C + A \overline{D} C$
F(A,B,C) = ABC + ABC + ABC + ABC
$F(A, B, C) = \overline{A}BC + A\overline{B}C + AB(\overline{C} + C)$
$F(A, B, C) = \overline{A}BC + A(\overline{B}C + B)$
$F(A, B, C) = \overline{A}BC + AB + AC$
$F(A, B, C) = B(\overline{A}C + A) + AC$
F(A, B, C) = B(C + A) + AC
F(A, B, C) = AB + BC + AC

Α	B	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ex. 24) If the waveforms in figure below are applied to an *active HIGH S-R latch*, draw the resulting *Q* output waveform in relation to the inputs. Assume that *Q* starts LOW?

Ex. 25) For a **negative edge-triggered J-K** flip-flop with the inputs in figure below, develop the Q output waveform relative to the clock. Assume that **Q** is initially LOW?

Ex. 26) Determine the output waveforms in relation to the clock for Q_A , Q_B , and Q_C in the circuit of Figure below and show the binary sequence represented by these waveforms. Begin with counter cleared?

Sol.

Ex. 27) 4-bit register (SRG 4) for the data input and clock waveforms in the figure below. The register initially contains all
1s. If the data input remains 0 after the fourth clock pulse, what is the state of the register after three additional clock pulses?

