

Heap Management

The heap is the portion of the store that is used for data that lives indefinitely, or
until the program explicitly deletes it. While local variables typically become
inaccessible when their procedures end, many languages enable us to create objects
or other data whose existence is not tied to the procedure activation that creates
them. For example, both C++ and Java give the programmer new to create objects
that may be passed from procedure to procedure, so they continue to exist long
after the procedure that created them is gone. Such objects are stored on a heap.

Allocating memory
There are two ways that memory gets allocated for data storage:
1. Compile Time (or static) Allocation

 Memory for named variables is allocated by the compiler
 Exact size and type of storage must be known at compile time
 For standard array declarations, this is why the size has to be constant

2. Dynamic Memory Allocation
 Memory allocated "on the fly" during run time
 dynamically allocated space usually placed in a program segment known as

the heap or the free store
 Exact amount of space or number of items does not have to be known by the

compiler in advance.
 For dynamic memory allocation, pointers are crucial

The Memory Manager
The memory manager keeps track of all the free space in heap storage at all times.
It performs two basic functions:
 Allocation. When a program requests memory for a variable or object, the
memory manager produces a chunk of contiguous heap memory of the requested
size. If possible, it satisfies an allocation request using free space in the heap;
if no chunk of the needed size is available, it seeks to increase the heap storage
space by getting consecutive bytes of virtual memory from the operating system. If
space is exhausted, the memory manager passes that information back to the
application program.
 Deallocation. The memory manager returns deallocated space to the pool of
free space, so it can reuse the space to satisfy other allocation requests. Memory

managers typically do not return memory to the operating system, even if the
program's heap usage drops.

Dynamic Memory Allocation

We can dynamically allocate storage space while the program is running, but we
cannot create new variable names "on the fly". For this reason, dynamic allocation
requires two steps:
1. Creating the dynamic space.
2. Storing its address in a pointer (so that the space can be accessed)

To dynamically allocate memory in C++, we use the new operator.

Deallocation:
 Deallocation is the "clean-up" of space being used for variables or other data
storage
 Compile time variables are automatically deallocated based on their known
extent (this is the same as scope for "automatic" variables)
 It is the programmer's job to deallocates dynamically created space
 To deallocates dynamic memory, we use the delete operator

Implementing dynamic allocation

Where does memory for a program's heap come from?
 The program makes calls to the OS (system calls) to add memory to the heap of
a running process (move the top of heap pointer)

– On Linux, this is void *sbrk(int incr)
 adds at least incr bytes to the end of the program's data segment

– The key idea is to get big chunks of memory from the OS and then hand out
small regions to the program on demand

 OS calls can be a hundred times slower than local subroutines
 How is the memory in the heap managed?

– Data structures need to be kept to:
 Keep track of what memory is in use, and
 Keep track of where the free memory regions are

– Calls to malloc(), free(), etc., update these data structures

A simple heap structure
1. Divide the heap into blocks
2. heap blocks:
– header (32 bits)
– allocated block (multiple of 8, double-word aligned)
– optional padding for alignment or other reasons
3. 4-byte header:
– 29 bits for size of block (why 29?)
– 1 bit to indicate free/allocated
– 2 bits available for other purposes; we won’t use them
– size is size of heap block, not allocated block
– end of heap marked by header w/ size = 0

 16 24 8 24 8 0

0 1 1 1 0 1

 Each cell above is 4 bytes (e.g. 4 byte chunks on a 32-bit system)
 Headers: size and used flag (1 marked in use and 0 indicates it is free)
 Blue areas: allocated blocks
 Red areas: wasted space due to alignment
 How can we find the address of the next block?
 What kinds of things could be stored at the areas pointed to by the pointers?

Above could be generated by this sequence:
r = malloc (8); (malloc find usable block on free list)
s = malloc(16);
p = malloc(4); p ()
q = malloc(20);
free(r);

s p r q

free
Chunk

low high

Managing and Coalescing Free Space

When an object is deallocated manually, the memory manager must make its
chunk free, so it can be allocated again. In some circumstances, it may also be
possible to combine (coalesce) that chunk with adjacent chunks of the heap, to
form a larger chunk. There is an advantage to doing so, since we can always use a
large chunk to do the work of small chunks of equal total size, but many small
chunks cannot hold one large object, as the combined chunk could.
If we keep a bin for chunks of one fixed size, as Lea does for small sizes, then we
may prefer not to coalesce adjacent blocks of that size into a chunk of double the
size. It is simpler to keep all the chunks of one size in as many pages as we need,
and never coalesce them. Then, a simple allocation/deallocation scheme is to keep
a bitmap, with one bit for each chunk in the bin. A 1 indicates the chunk is
occupied; 0 indicates it is free. When a chunk is deallocated, we change its 1 to a
0. When we need to allocate a chunk, we find any chunk with a 0 bit, change that
bit to a 1, and use the corresponding chunk. If there are no free chunks, we get a
new page, divide it into chunks of the appropriate size, and extend the bit vector.

Reducing Fragmentation

At the beginning of program execution, the heap is one contiguous unit of free
space. As the program allocates and deallocates memory, this space is broken up
into free and used chunks of memory, and the free chunks need not reside in a
contiguous area of the heap. We refer to the free chunks of memory as holes.
With each allocation request, the memory manager must place the requested chunk
of memory into a large-enough hole. Unless a hole of exactly the right size is
found, we need to split some hole, creating a yet smaller hole.
With each deallocation request, the freed chunks of memory are added back to the
pool of free space. We coalesce contiguous holes into larger holes, as the holes can
only get smaller otherwise. If we are not careful, the memory may end up
getting fragmented, consisting of large numbers of small, noncontiguous holes.
It is then possible that no hole is large enough to satisfy a future request, even
though there may be sufficient aggregate free space.

Problem: free creates holes (fragmentations) results, lots of free space but cannot
satisfy request

Best-Fit and Next-Fit Object Placement

We reduce fragmentation by controlling how the memory manager places new
objects in the heap. It has been found empirically that a good strategy for
minimizing fragmentation for real-life programs is to allocate the requested
memory in the smallest available hole that is large enough. This best-fit
algorithm tends to spare the large holes to satisfy subsequent, larger requests. An
alternative, called first-fit, where an object is placed in the first (lowest-
address) hole in which it fits, takes less time to place objects, but has been
found inferior to best-fit in overall performance.
To implement best-fit placement more efficiently, we can separate free space
into bins, according to their sizes. One practical idea is to have many more bins for
the smaller sizes, because there are usually many more small objects.

For sizes that do not have a private bin, we find the one bin that is allowed
to include chunks of the desired size. Within that bin, we can use either a first-fit
or a best-fit strategy; i.e., we either look for and select the first chunk that
is sufficiently large or, we spend more time and find the smallest chunk that is
sufficiently large. Note that when the fit is not exact, the remainder of the chunk
will generally need to be placed in a bin with smaller sizes.

While best-fit placement tends to improve space utilization, it may not be the
best in terms of spatial locality. Chunks allocated at about the same time by a
program tend to have similar reference patterns and to have similar lifetimes.
Placing them close together thus improves the program’s spatial locality. One
useful adaptation of the best-fit algorithm is to modify the placement in the case
when a chunk of the exact requested size cannot be found. In this case, we use a
next-fit strategy, trying to allocate the object in the chunk that has last been
split, whenever enough space for the new object remains in that chunk. Next-fit
also tends to improve the speed of the allocation operation.

We can summaries the placement algorithms → selecting among free blocks of
main memory as follows:

 Best-Fit: Closest in size to the request
 First-Fit: Scans the main memory from the beginning and first available block
that is large enough
 Next-Fit: Scans the memory from the location of last placement and chooses
next available block that is large enough

Compaction is time consuming → OS must be clever in plugging holes while
assigning processes to memory

Allocation of 16 MB block using three placement algorithms

Example

Suppose the heap consists of seven chunks. The sizes of the chunks, in order, are
80, 30, 60, 50, 70, 20, 40 bytes. If your request space for objects of the
following sizes: 32, 64, 48, 16, in that order, what does the free space list look
like after satisfying the requests, if the method of selecting chunks is (a) First fit,
b) Best fit).

First Fit

80
30
60
50
70
20
40

First fit 32

32
48
30
60
50
70
20
40

first fit 64

32
48
30
60
50
64
6
20
40

first fit 48

32
48
30
60
50
64
6
20
40

first fit 16

32
48
16
14
60
50
64
6
20
40

Best fit

80
30
60
50
70
20
40

Best fit 32

80
30
60
50
70
20
32
8

Best fit 64

80
30
60
50
64
6
20
32
8

Best fit 48

80
30
60
48
2
64
6
20
32
8

Best fit 16

80
30
60
48
2
64
6
16
4
32
8

If the heap look like in the figure below

 Allocated block

 Free block

 Possible new allocation

80

30

60
50

70

20

40

32 byte

First, and best fit

32
48

30

60
50

70

20

32
8

64 byte

First, and best fit

32
48

30

60
50

64
6

20

32
8

48 byte

First, and best fit

32
48

30

60
50

64
6

20

32
8

16 byte

First, and best fit

32
48

16
14

60
50

64
6

16
4

32
8

First fit

Best fit

First fit
and
Best fit

First fit
and
Best fit

First fit

Best fit

