
  

 

Heap Management 
 
The heap is the portion of the store that is used for data that lives indefinitely, or 
until the program explicitly deletes it. While local variables typically become 
inaccessible when their procedures end, many languages enable us to create objects 
or other data whose existence is not tied to the procedure activation that creates 
them. For example, both C++ and Java give the programmer new to create objects 
that may be passed from procedure to procedure, so they continue to exist long 
after the procedure that created them is gone. Such objects are stored on a heap. 
 
Allocating memory 
There are two ways that memory gets allocated for data storage: 
1. Compile Time (or static) Allocation 

 Memory for named variables is allocated by the compiler 
 Exact size and type of storage must be known at compile time 
 For standard array declarations, this is why the size has to be constant 

2. Dynamic Memory Allocation 
 Memory allocated "on the fly" during run time 
 dynamically allocated space usually placed in a program segment known as 

the heap or the free store 
 Exact amount of space or number of items does not have to be known by the 

compiler in advance. 
 For dynamic memory allocation, pointers are crucial 

 
 
 
The Memory Manager  
The memory manager keeps track of all the free space in heap storage at all times.  
It performs two basic functions:  
 Allocation. When a program requests memory for a variable or object, the 
memory manager produces a chunk of contiguous heap memory of the requested 
size. If possible, it satisfies an allocation request using free space in the heap; 
if no chunk of the needed size is available, it seeks to increase the heap storage 
space by getting consecutive bytes of virtual memory from the operating system. If 
space is exhausted, the memory manager passes that information back to the 
application program.  
 Deallocation.  The memory manager returns deallocated space to the pool of 
free space, so it can reuse the space to satisfy other allocation requests. Memory 



  

 

managers typically do not return memory to the operating system, even if the 
program's heap usage drops. 
 
Dynamic Memory Allocation 
 
We can dynamically allocate storage space while the program is running, but we 
cannot create new variable names "on the fly". For this reason, dynamic allocation 
requires two steps: 
1. Creating the dynamic space. 
2. Storing its address in a pointer (so that the space can be accessed) 
 
To dynamically allocate memory in C++, we use the new operator. 
 
Deallocation: 
 Deallocation is the "clean-up" of space being used for variables or other data 
storage 
 Compile time variables are automatically deallocated based on their known 
extent (this is the same as scope for "automatic" variables) 
 It is the programmer's job to deallocates dynamically created space 
 To deallocates dynamic memory, we use the delete operator 
 
Implementing dynamic allocation 
 
Where does memory for a program's heap come from? 
 The program makes calls to the OS (system calls) to add memory to the heap of 
a running process (move the top of heap pointer) 

– On Linux, this is void *sbrk(int incr) 
 adds at least incr bytes to the end of the program's data segment 

– The key idea is to get big chunks of memory from the OS and then hand out 
small regions to the program on demand 

 OS calls can be a hundred times slower than local subroutines 
 How is the memory in the heap managed? 

– Data structures need to be kept to: 
 Keep track of what memory is in use, and 
 Keep track of where the free memory regions are 

– Calls to malloc(), free(), etc., update these data structures 
 
 



  

 

A simple heap structure 
1. Divide the heap into blocks 
2. heap blocks: 
– header (32 bits) 
– allocated block (multiple of 8, double-word aligned) 
– optional padding for alignment or other reasons 
3. 4-byte header: 
– 29 bits for size of block (why 29?) 
– 1 bit to indicate free/allocated 
– 2 bits available for other purposes; we won’t use them 
– size is size of heap block, not allocated block 
– end of heap marked by header w/ size = 0 

 
 
 
 16    24      8  24      8  0 

 
0 1 1 1 0 1 

 
 
 

 Each cell above is 4 bytes (e.g. 4 byte chunks on a 32-bit system) 
 Headers: size and used flag (1 marked in use and  0 indicates  it  is free)  
 Blue areas: allocated blocks 
 Red areas: wasted space due to alignment 
 How can we find the address of the next block? 
 What kinds of things could be stored at the areas pointed to by the pointers? 

 
 
Above could be generated by this sequence: 
r = malloc (8); (malloc find usable block on free list) 
s = malloc(16); 
p = malloc(4); p () 
q = malloc(20); 
free(r); 
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Managing and Coalescing Free Space  
 
When an object is deallocated manually, the memory manager must make its 
chunk free, so it can be allocated again.  In some circumstances, it may also be 
possible to combine (coalesce) that chunk with adjacent chunks of the heap, to 
form a larger chunk.  There is an advantage to doing so, since we can always use a 
large chunk to do the work of small chunks of equal total size, but many small 
chunks cannot hold one large object, as the combined chunk could.  
If we keep a bin for chunks of one fixed size, as Lea does for small sizes, then we 
may prefer not to coalesce adjacent blocks of that size into a chunk of double the 
size. It is simpler to keep all the chunks of one size in as many pages as we need, 
and never coalesce them. Then, a simple allocation/deallocation scheme is to keep 
a bitmap, with one bit for each chunk in the bin. A 1 indicates the chunk is 
occupied; 0 indicates it is free.  When a chunk is deallocated, we change its 1 to a 
0. When we need to allocate a chunk, we find any chunk with a 0 bit, change that 
bit to a 1, and use the corresponding chunk.  If there are no free chunks, we get a 
new page, divide it into chunks of the appropriate size, and extend the bit vector. 
 
Reducing Fragmentation 
 
At the beginning of program execution, the heap is one contiguous unit of free 
space. As the program allocates and deallocates memory, this space is broken up 
into free and used chunks of memory, and the free chunks need not reside in a 
contiguous area of the heap. We refer to the free chunks of memory as holes. 
With each allocation request, the memory manager must place the requested chunk 
of memory into a large-enough hole. Unless a hole of exactly the right size is 
found, we need to split some hole, creating a yet smaller hole. 
With each deallocation request, the freed chunks of memory are added back to the 
pool of free space. We coalesce contiguous holes into larger holes, as the holes can 
only get smaller otherwise. If we are not careful, the memory may end up 
getting fragmented, consisting of large numbers of small, noncontiguous holes. 
It is then possible that no hole is large enough to satisfy a future request, even 
though there may be sufficient aggregate free space. 
 

 



  

 

Problem: free creates holes (fragmentations) results, lots of free space but cannot 
satisfy request 
 

 
 
Best-Fit and  Next-Fit Object Placement  
 
We reduce fragmentation by controlling how the memory manager places new 
objects in the heap. It has been found empirically that a good strategy for 
minimizing fragmentation for real-life programs is to allocate the requested 
memory in the smallest available hole that is large enough. This best-fit 
algorithm tends to spare the large holes to satisfy subsequent, larger requests. An  
alternative, called first-fit, where an object  is  placed in  the  first (lowest-
address) hole  in which  it  fits, takes  less  time  to place  objects,  but  has  been 
found inferior to best-fit in overall performance. 
To implement best-fit placement more efficiently, we can separate free space 
into bins, according to their sizes. One practical idea is to have many more bins for 
the smaller sizes, because there are usually many more small objects.  
 
For sizes  that  do not  have  a private bin,  we  find  the  one bin  that  is allowed 
to include chunks of the desired size. Within that bin, we can use either a  first-fit 
or a best-fit  strategy;  i.e., we  either  look for  and  select the first chunk that  
is sufficiently large or, we spend more time and find the smallest chunk that is 
sufficiently large. Note that when the fit is not exact, the remainder of the chunk 
will generally need to be placed in a bin with smaller sizes. 
 
While best-fit placement tends to improve space utilization, it may not be the 
best in terms of spatial locality. Chunks allocated at about the same time by a 
program tend to have similar reference patterns and to have similar lifetimes. 
Placing them close together thus improves the program’s spatial locality. One 
useful adaptation of the best-fit algorithm is to modify the placement in the case 
when a chunk of the exact requested size cannot be found.  In this case, we use a 
next-fit strategy, trying to allocate the object in the chunk that has last been 
split, whenever enough space for the new object remains in that chunk. Next-fit 
also tends to improve the speed of the allocation operation. 
 



  

 

We can summaries the placement algorithms → selecting among free blocks of 
main memory as follows: 
 
 Best-Fit: Closest in size to the request 
 First-Fit: Scans the main memory from the beginning and first available block 
that is large enough 
 Next-Fit: Scans the memory from the location of last placement and chooses 
next available block that is large enough 
 
Compaction is time consuming → OS must be clever in plugging holes while 
assigning processes to memory 
 
Allocation of 16 MB block using three placement algorithms 
 

 
 
 
 



  

 

Example 

Suppose the heap consists of seven chunks. The sizes of the chunks, in order, are 
80, 30, 60, 50, 70, 20, 40 bytes. If your request space for  objects of  the  
following sizes:  32,  64, 48,  16, in  that order, what does the free space list look 
like after satisfying  the requests, if  the method of  selecting chunks is (a) First fit, 
b) Best fit).    
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First fit 32 
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first fit 48 
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first fit 16 
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Best fit 
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Best fit 32 
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Best fit 64 
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If the heap look like in the figure below 
 

 Allocated block 

 Free block 

 Possible new allocation 
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