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Vector Space

Definition 4.2.1 Let V' be a set on which two operations (vector
addition and scalar multiplication) are defined. If the listed axioms
are satisfied for every u, v, w in V' and scalars ¢ and d, then V is called

a vector space (over the reals R).

1. Addition:

(a) u+ v is a vector in V' (closure under addition).
(b) u+ v = v+ u (Commutative property of addition ).
(¢) (u+v)+w =u+(v+w) (Associative property of addition).

(d) There is a zero vector O in V such that for every uin V
we have (u 4+ 0) = u (Additive identity).
(e) For every u in V, there is a vector in V' denoted by —u such

that u+ (—u) = 0 (Additive inverse).

2. Scalar multiplication:

(a) cuis in V (closure under scalar multiplication(.
(b) c(u+v)=cu+cv (Distributive propertyof scalar mult.).
(¢) (¢4 d)u= cu+ du (Distributive property of scalar mult.).
(d) ¢(du) = (cd)u (Associate property of scalar mult.).

(¢) 1(u) = u (Scalar identity property).
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Example

‘ Let V = {(:1:, %:1:) : x real number}
with standared operations. Is it a vector space. Justify vour answer.
I I A

Solution: Yes, V is a vector space. We check all the properties in

, one by one:

1. Addition:

(a) For real numbers z.y, We have

(-’1»', %:r) + (y- %u) = (:r + vy, %(-‘17 + y)) .

So, V' is closed under addition.
(b) Clearly, addition is closed under addition.

(¢) Clearly, addition is associative.

(d) The element 0 = (0,0) satisfies the property of the zero
element.
(e) We have — (:r, iz) = (—;r., %(—.L)) .So, every element in V'

has an additive inverse.
2. Scalar multiplication:

(a) For a scalar ¢, we have

e (o) = (e her).

So, V' is closed under scalar multiplication.
(b) The distributivity ¢(u + v) = cu + ¢v works for u, v in V.

(c¢) The distributivity (¢ + d)u = cu + du works, for u in V and

scalars e, d.

(d) The associativity ¢(du) = (ed)u works.

(e) Also 1u = u.
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Theorem

Let V' be vector space over the reals R and v be an

element in V. Also let ¢ be a scalar. Then,
1. Ov = 0.

2. c0=0.

3. If ev = 0, then either ¢ = 0 or v = 0.

4. (—1)v = —v.
Example
[ ]

Let V' be the set of all fifth-degree
polynomials with standared operations. Is it a vector space. Justify
your answer.

Solution: In fact, V' is not a vector space. Because V is not closed
under addition(axiom (1la) of definition fails): f =2°+x —1 and

g=—-2"areinVbut f+g=(2>+z—1)—2°=2x—1is not in V.

Let V = {(z,y) : z > 0,y > 0}

with standared operations. Is it a vector space. Justify your answer.

Solution: In fact, V' is not a vector space. Not every element in V' has
an addditive inverse (axiom [le) of fails): —(1,1) = (-1,-1) is

not in V.

Subspaces of Vector Spaces

Definition

A nonempty subset W of a vector space V' is called
a subspace of V' if W is a vector space under the operations addition

and scalar multiplication defined in V.
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Example

Let W = {(x.,0) : = is real number}. Then W < R2 (The
notation C reads as ‘subsef of’.) It is easy to check that W is a

subspace of R2.

Theorem

Suppose V' is a vector space over R and W C V' is a
nonempty subset of V. Then W is a subspace of V' if and only if the

following two closure conditions hold:

1. If u. v are in W, then u + v is in W.

2. If uis in W and ¢ is a scalar, then cu is in W.

Example

a
LetH= {lﬂl a and b are real}. Show that H is a subspace of R * .
b

Solution:

Verify properties a, b and ¢ of the definition of a subspace.

a. The zero vector of R *is in H (leta=0 and b =0 ).
b. Adding two vectors in H always produces another vector whose second entry is and

therefore the sum of two vectors in H is also in H. (H is closed under addition)

c. Multiplying a vector in H by a scalar produces another vector in H (H is closed under

scalar multiplication).

Since properties a, b, and ¢ hold, V is a subspace of R® .
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Example
X .
IsH= {x 4 qixis real} a subspace of R* ?

Solution:

For H to be a subspace of R* , all three properties must hold Property (a) fails.

Therefore H is not a subspace of R” .

Another way to show that  is not a subspace of R? :

Letu= [(1)] and v = B], thenu +v= [;] .So property (b) fails and so Hisnota  subspace
of R%.

Definition
A vector v in a vector space V is called a linear
combination of vectors u;, us,....uy in V if v can be written in the
form
V =ciu + cuz + -+ - + Uy,
where ¢y, o, ..., ¢ are scalars.
Definition
Let V be a vector space over R and
S = {vq1,Va,..., v} be a subset of V. We say that S is a spanning

set of V if every vector v of V' can be written as a liner combination

of vectors in S. In such cases, we say that S spans V.
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Linear Algabra

Definition

Let V be a vector space over R and
S = {V1,V2y..., vk} be a subset of V. Then the span of S is the
1, V2 k

set of all linear combinations of vectors in S.
span(S) = {c;vy + Vg + -+ - + Cp Vi : €1,Ca, . . ., Cr are Scalars}.

1. The span of S is denoted by span(S) as above or span{vy,va,..., Vic}

2. If V = span(S), then say V is spanned by S or S spans V.

Theorem:

Ifvy,...,v,aren a vector space V, then Span{vy, ..., v,} 1s a subspace of V.

Example
Is V= {(a+ 2b,2a — 3b) : a and b are real} a subspace of R* ?

Solution: Write vectors in V' in column form:
a+2b71_ 11 2
oa = 3p) = el 01 5)
So V' =Span{vy, v,} and therefore V' is a subspace by Theorem 1.

Example

a+2b
IsH=]{| a + 1 |aand b are real { a subspace of R® ?
a
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Solution:

0 1s not in / since a = b =0 or any other combination of values for @ and b
does not produce the zero vector.

So property fails to hold and therefore H is not a subspace of R*-

Example
Is the set H of all matrices of the form [ Za b ] a subspace of M,.,?
3a+b 3b
Solution:
. 2a bl _ [2a 0 0 b
since [543l =150 ol 1y 3
_ 2 010 1 .
Therefore H =Span {[3 ol'l1 3 } and so H is a subspace of M;.,.

Definition

Let V be a vector space. A set of elements (vectors)

S = {v1,Vva,... vk} is said to be linearly independent if the equation
CiV1 + Ve + -+ v =0
has only trivial solution
cp=0,c0=0,..., cr = 0.

We say S is linearly dependent, if S in not linearly independent.
(This means, that S is said to be linearly dependent, if there is at least

one nontrivial (i.e. nonzero) solutions to the above equation.)
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Example

Let S = {(6,2,1),(—1,3,2)}. De-

termine, if S is linearly independent or dependent?

Solution: Let

c(6,2,1) +d(—1.3,2) = (0,0,0).

If this equation has only trivial solutions, then it is linealry independent.
This equaton gives the following system of linear equations:
6c —d =0
2¢c 4+3d =0
c +2d =0

The augmented matrix for this system is

6 —1 0 1 0 0
2 3 0 |. its gauss — Jordan form : 0O 1 0
1 2 0 0O 0 O
So, ¢ = 0,d = 0. The system has only trivial (i.e. zero) solution. We

conclude that S is linearly independent.

Exercise
Let
S ={(1,0,0),(0,4,0),(0,0,-6), (1,5, —3)}.

Determine, if S is linearly independent or dependent?
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Basis

Definition

Let V' be a vector space and S = {vy,va,... vk} be
a set of elements (vectors)in V. We say that S is a basis of V' if
1. S spans V and
2. § is linearly independent.
Example
standard basis of R™.
1. Consider the vector space R2. Write
e; = (1,0),ex = (0,1).
Then, e;.e» form a basis of R=2.
2. Consider the vector space R*. Write
e1 = (1,0,0),e2 = (0,1,0),e2 = (0,0,1).

Then, ey, es, es form a basis of R?.

3. More generally, consider vector space R™. Write

Then, e;,es,e3,..., e, form a basis of R". The proof will be
similar to the above proof. This basis is called the standard

basis of R".
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Explain, why the set
S ={(2,1,—-2),(—2,—1,2),(4,2, —4)}

is not a basis of IR37

Solution: Note

(4.2, —4) = (2.1, —2) — (—2. —1.2)

(2,1, —2) — (—2,—1.2) — (4.2, —4) = (0,0, 0).

So, these three vectors are linearly dependent. So, S is not a basis of

R3.
5.
Explain, why the set
S = {6z — 3,321 — 2z — 2*}

is not a basis of Py?

Solution: Note

. 1 |
12z —2°= —5(61’ -3) - 5(312)

OR

. 1 1 .
(1 -2z —2%) + §(6;r -3) + §(3;1:2) =0.

So, these three vectors are linearly dependent. So, S is not a basis of
Ps.



