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3D Stress Tensors

3D Stress Tensors, Eigenvalues and Rotations

Recall that we can think of an n x n matrix Mij as a transformation matrix that
transforms a vector xito give a new vector y;j (first index = row, second index =

column), e.g. the equation MIX = Y. We define x to be an eigenvector of M if there
exists a scalar A such that

MX = AX (34)

The value(s) A are called the eigenvalues of M. We can And the eigenvalues simply, as
follows. First we can infer that

Mx-Ax=0 (35)
where 0 is a zero (null) vector. Then we can simplify this by introducing the Identity
matrix | of the same size as M

(M -Ax =0 (36)
This implies that det(M -Al) = 0, since the only solution is found where the size of
M -Al
IS zero, where det signifies the determinant. We are interested in solving this problem

for 3x3 matrices, that is for 3D states of stress (or, as we shall see later, strain). You
will recall the checkerboard pattern for finding a determinant of a matrix A,

+ - +
- + - (37)
+ - +

We find the determinant of A by multiplying each of the terms in any row or column

by (i) the corresponding sign from the checkerboard pattern and (ii) the determinant
of the 2x2 matrix left out once that term's row and column have been removed. e.g.
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So if we have a square symmetric stress matrix o; then its eigenvalues will be
given by

(38)



lo — M| = +(011 — A) {(022 — M) (o33 — A) — 033}
— o012 {o12(033 — A) — 093013}
+ o013 {012093 — (020 — A)o1a}  (39)

This is a cubic in. A For many cases, many of the indices will be zero and the
cubic will be easy to solve. Typically, the first root is found by inspection (e.g. A = 2
IS a root), at which point the problem can be reduced to a quadratic by substitution
and the remaining roots found trivially.
To find the eigenvectors we then solve the equation (o-Al) X = 0 for each of the n
eigenvalues in turn. For a 3x3 (square) symmetric (stress) matrix, this will produce
three linearly independent eigenvectors. Each eigenvector will be scale-independent,
since if x is an eigenvector, it is trivial to show that ax is also an eigenvector.
It turns out to be possible to show that in this case the eigenvalues are the principal
stresses, and the eigenvectors are the equations of the axes along which the principal
stresses act.

Aside: Calculating Shear Stresses in Sections

Question. A bar of radius 50mm transmits 500kW and 6000 rpm. What is the shear
stress is the bar?

Solution. We remember that Power = Torque x Angular Velocity,

P=To (40)
and that the shear stress 7 is related to the torque through the polar moment of inertia J
and the outer radius R by

TH=1/R (41)

Jis given, for any section by J = [ 1% dA S0, a shaft of inner radius r
and outer radius R,

J =m(R? —1?) (42)

Therefore, in this case,

J = m(0.05%) = 9.187 x 10~°m* (44)

T=P/w  5,000/(6000x (2—’;) = 795.78 Nm (45)

So the result is given by
t=22=79578 x 222 x 106 = 4.05MPa (46)
Ji 9.817



Diagonalising matrices

In the previous section, we found the eigenvectors and eigenvalues of a
matrix M. Consider the matrix of the eigenvectors X composed of each of
the (column) eigenvectors X in turn, e.g. Xj; = Xi; J, and the matrix D with
the corresponding eigenvalues on the leading diagonal and zeroes as the
off-axis terms, e.g. Dji = Aj and Dj; = 0 i1 # . So for a 3x3 matrix M,

A 0 O
D={0 A 0 |. Byinspection, we can see that
0 0 A

MX = XD (46)
because for each column, Mx = Ax.
Hence, D=X"1 - MX (47)
A neat example of this is finding large powers of a matrix. For example,
M? = (XDx 1Y) (XDx™1) = (XD?x™1) (48)

and so on for higher powers.

It turns out that the matrix of eigenvectors X is highly significant. Later, we will look
at how to rotate a stress matrix in the general case. However, you will already be able
to see that it is always possible to rotate the stress matrix using X, the rotation matrix
composed of the unit eigenvectors, to produce a matrix of eigenvalues D. It turns out
that this matrix is the matrix of principal stresses, i.e. that the eigenvalues of the stress
matrix are the principal stresses.

Principal Stresses in 3 Dimensions

Generalising the 2D treatment of the inclined plane to 3D, we consider an inclined
plane. We take a cube with a stress state referred to the 1; 2; 3 axes, and then cut it
with an inclined plane with unit normal x = (I, m, n) and area A.
The components of x along the 1; 2; 3 axes are its direction cosines, that is, the
cosines of the angles between x and the axes. We require that the stress _ normal to
the inclined plane is a principal stress, that is that there are no shears on the inclined
plane, Figure 15 First we notice that the components of ¢ in the 1,2 and 3 directions
are o [, o m and o n, respectively. The areas of the triangles forming the walls of the
original cube are also

KOL = Al JOK = Am JOL = An (49)
If we resolve all the forces in the 1 direction, we find that

O-Al - O-llAl - 0'21Am - 0-31An == O (50)
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Figure 15: Inclined plane cut through the unit stress cube to give a principal stress o
along the x vector.

Similarly for the other two axes,

_O-lzl + (O- - Uzz)m - 0-327’1
— 031l —03;m + (0 — g33)n

0 (52)
0 (53)



So we can write this set of simultaneous equations as (multiplying through by -1 for
convenience and requiring that cij = Giji)

o1 —0 012 013 [
T12 Toyo — TT93 m =0 (5—1)
TJ13 093 Tag — T T

The only nontrivial solution is where the determinant of the left-hand matrix is zero,
so by comparison with Equation 36 we find that the solutions for ¢ are the
eigenvalues of the stress matrix. This is given by

3 9 2 2 9
0 — 07 (011 + 099 + 033) + 0 (01109 + 099093 + 033011 — 07y — 93 — 073)

‘ 2 2 2
—(01100033 + 2019093013 — 011093 — 090073 — T3307,) =0 (55)

The three roots of this equation are the principal stresses. Note that the three
coefficients of this equation determine the principal stresses. Therefore these
coefficients cannot change under a rotation of the coordinate axes and are invariant.
These invariants are

Iy = 011 + 099 + 033 (56)

P 2 2 -

Iy = 011099 + 092033 + 03301 — 01y — 033 — 073 (57)
. p 2 2

I3 = 011022033 + 2012093013 — 011053 — 022073 — 033073 (58)

The first invariant we identify as 3 times the hydrostatic stress _nyd, which is
the average of the cii. When we come to consider yielding, the hydrostatic stress will
assume a new significance. This also implies that this hydrostatic stress is the same, in
any coordinate system.

Example: Finding principal stresses

Question. A material is subject to the following stress state. What are the principal
stresses in the material?

100 20 0
o=(20 0 20 |MPa (62)
0 20 100



Solution. We need to find the eigenvalues, so;

100 — A 20 0
20 0—XA 20 |=0 (63)
0 20 100 — A

Which gives the cubic equation

(100 — A) {=A(100 — A) — 20}
—20{20(100 — A) —0(20)} +0{20* = 0(=A)} = 0 (64)

50
0

(100 = A)(A2 = 100X — 2  20%)
which has solutions \ = 100,50 £ 10v/17 MPa.

Example: Stresses on crystal axes

Question. A single erystal is loaded as follows on its [100], [010] and [001] axes. What are the
normal stresses on the (orthornormal) %[1 11], %[ITO] and ﬁ[llﬁ] axes?

100 20 0
o=|[20 0 20| MPa (66)
0 20 100

Solution. First we write down the rotation matrix a, which is the matrix with the vectors
entered in the rows;

11 1
Rl o
VB V6 VB
Then using Equation 59, we find that
111 11 anT
r \{g @ NE) 100 20 0 \1@ _\[% NE]
od=lx 5 0 20 0 20||5 % 0 (68)
Lo =2 0 20 100/ \L L =2
VB VB VB VB VB G
So, performing the first matrix multiplication,
6 2 6 411
V3 V3 V3 V3 V26
r_9p|l L L =L 1 =L L (69)
V6 vs v/ \vi U

(65)



Now we perform the second matrix multiplication to obtain;

14 4 —4
@ @ @ 933 32.7 —18.9

o' =20 _75, @ @ = 312579 4%04 i{;.i MPa (70)
Vs V12 V36 o : :

The rotated matrix is still symmetric (this must be true, by theorem). When choosing the set

of new basis vectors to use care must be taken to ensure that they are orthogonal to each other
and of unit length (orthonormal).

Notice how it is possible, if calculationally intensive, to find the resolved shear stress on any slip
system, e.g. on the (111)[110] slip system (32.7 MPa). For plasticity, however, our consideration
of yielding later in the course will force us to use, rather than the total stress tensor we have so

far considered, the deviatoric stress tensor which has the hydrostatic stress subtracted. This is
because the hydrostratic stress cannot cause yielding.



Strain and Elasticity

Strain is defined as the distortion of the elemental
cube, as opposed to a rigid body translation or ro-
tation of the cube. Defining the displacement field
u = (uq,ug, ug), we first assume that « is a linear
function of position z, and so define the deforma-
tion tensor e as

O
Ei‘:j = - (7‘4:)
C):L‘j
ou Ju o
e.g. ey] = ﬁ} €91 = ﬁ, €19 = ﬁ, etc. However,

consider the following three cases.

The first case in Figure 18, (a), e;o = €91, shows a
situation called pure shear. In (b), 1o = —eqy, the
block is simply rotating and doesn’t change shape
at all. In (c) es; = 0 and eyp # 0, which is called
simple shear.

Therefore we define the strain tensor £ as the sym-
metric part of the deformation tensor e, and a sep-
arate rotation tensor w which is the antisymmetric
part of e. Thus

1 1
eij = 5 +ei),  wij =5 —ei)  (7D)
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Figure 18: Different deformation states of
an elemental cube.

Notice that e = ¢ + . Thus, like stress, strain is by definition a symmetric tensor and
has only 6 independent components.

There is a problem however! Conventionally, a shear strain is defined by the
shear angle produced in simple shear, below.

So in this case the tensor shear strain e, = 12 (e, + €,) =1
12 (y + 0) = y/2. This problem is simply one of definition. The notation used in each
case is quite standard so this is easily
overcome.
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Figure 19: Definition of the simple shear strain y .

Isotropic Elasticity

In general, very few materials are actually isotropic, even elastically. This is
because single crystals are usually elastically and plastically anisotropic, and because
most manufacturing processes produce some “uneven-ness' in the orientation
distribution, or texture. Therefore we need to consider, in the general case, how to
convert from stress to strain and vice-versa.

Starting with the case of simple isotropic elasticity, the basic equations are
based on Hooke's Law, which in the general case gives
Ee1 = oy —v(oy, + 03)

where E is Young's Modulus and v is Poisson's ratio. Stresses and strains are
super posable, so we can combine stresses along di_erent axes. In shear, a similar
equation can be written, T = Gy, where G is the Shear Modulus. In tensor notation,
because &,, = y/2, this gives cij = 2Ggjj



However, it is easy to see that E, v and G must be inter-related for an isotropic
material, as follows consider a system in a state of simple shear stress,

0O o O
o 0 O
0O 0 O

Using Mohr's Circle, we can rotate this to find the Principal Stresses, which
arethatoi1=0c and -c2=o¢
So we can find the strains along the principal axes by using Hookes Law, so Eg1=c -
v(—o+0)=c(1+v),and Ee;, = —c—v(c+0)=—-a(1+7v).
We can then use Mohr's Circle for strain, in exactly the same way as for stress, Figure
below Since the rotation in Mohr's circle is the same in the two cases, the strains must
be equivalent and so &, in the original axes is given by
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Figure 21: Determination of applied shear strains from the principal strains +4

By comparison with Equation above we can therefore say that

_E
T 2(1+v)

Hence for an isotropic material there are only two independent elastic
constants. We can also define other related Elastic constants that are useful in di_erent
stress states. The Bulk Modulus or dilatational modulus K is useful for hydrostatic
stress problems, and is defined by



