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6 Extreme Values and Saddle Points:

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function f(x, y) of two variables, we look
for points where the surface z = f(x, y) has a horizontal tangent plane. At such points, we
then look for local maxima, local minima, and saddle points. We begin by defining max-
ima and minima.

DEFINITIONS Let f(x, y) be defined on a region R containing the point (a, b).
Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x, y) for all domain
points (x, y) in an open disk centered at (a, b).

2. f(a. b) is a local minimum value of f if f(a, b) = f(x, y) for all domain
points (x, y) in an open disk centered at (a, b).

As with functions of a single variable, the key to identifying the local extrema is the
First Derivative Test, which we next state and prove.

Local maxima
(no greater value of f nearby)
\

S
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Local minimum —
(no smaller value
of fnearby)
FIGURE 14.43 A local maximum occurs at a mountain peak and a
local minimum occurs at a valley low point.

THEOREM 10—First Derivative Test for Local Extreme Values If f(x, y) hasa
local maximum or minimum value at an interior point (a, b) of its domain and if
the first partial derivatives exist there, then f(a, b) = 0 and f(a, b) = 0.
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Proof  If f has a local extremum at (@, b), then the function f(X, b) has a local extremum at
x = a (Figure bellow). Therefore fx(a, b) = 0. A similar argument with the fy(a, b) = 0.

If we substitute the values f(a, b) = 0 and f,(a, b) = 0 into the equation
fa,b)x —a) + fa,b)(y — b) — (z — f(a, b)) =0
for the tangent plane to the surface z = f(x, y) at (a, b), the equation reduces to
Oe(X — )+ Qs(y—b) —2+ fa.b) =10
or
z = f(a, b).

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a
local extremum, provided there is a tangent plane there.

DEFINITION An interior point of the domain of a function f(x, y) where both f,
and f, are zero or where one or both of f, and f, do not exist is a critical point
of f.
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EXAMPLE 1 Find the local extreme values of f(x, y) = x> + y> — 4y + O.

Solution The domain of f is the entire plane (so there are no boundary points) and the
partial derivatives f, = 2x and f, = 2y — 4 exist everywhere. Therefore, local extreme
values can occur only where

fi=2x=0 and f, =2y —4=0.

The only possibility is the point (0, 2), where the value of f is 5. Since f(x,y) =
x>+ (y — 2)* + 5 is never less than 5, we see that the critical point (0, 2) gives a local
minimum [ |
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THEOREM 11—Second Derivative Test for Local Extreme Values Suppose
that f(x, y) and its first and second partial derivatives are continuous throughout a
disk centered at (a, b) and that f(a, b) = f,(a,b) = 0. Then

i) f has alocal maximum at (a, b) if f,, < 0 and fyf,, — f,*> > 0 at(a, b).
ii) f has alocal minimum at (q, b) if f,, > 0 and f,f,, — f,\j.?‘ > 0 at (a, b).
iii) f has a saddle point at (a, b) if f . f,, — f,> < 0 at(a, b).

iv) the test is inconclusive at (a, b) if f,.f,, — fn2 = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

The expression f,.f,, — fn’ is called the discriminant or Hessian of f. It is some-
times easier to remember it in determinant form,

f XX f Xy
o T

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface curves
the same way in all directions: downward if f,, < 0, giving rise to a local maximum, and

f xxf yy f ,\3'2 =

upward if f,, > 0, giving a local minimum. On the other hand, if the discriminant is nega-
tive at (a, b), then the surface curves up in some directions and down in others, so we have a
saddle point.
EXAMPLE 3 Find the local extreme values of the function

fx,y) = xy — x2 — y2 —2x — 2y + 4.
Solution The function is defined and differentiable for all x and y. and its domain has no

boundary points. The function therefore has extreme values only at the points where f,
and f, are simultaneously zero. This leads to

fi=y—2x—2=0, fy=x—2y—-2=0,
or
x=y=-2

Therefore, the point (—2, —2) is the only point where f may take on an extreme value. To
see if it does so, we calculate

The discriminant of f at (a, b) = (=2, —2) is
fufy = fo’ = 2)(2) — (1)) =4 — 1 =3.
The combination
fo <O and  fufy — f®> >0

tells us that f has a local maximum at (—2,—2). The value of f at this point is
f(=2.-2) = 8. o
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EXAMPLE 5 Find the critical points of the function f(x, y) = 10xye” @ and use
the Second Derivative Test to classify each point as one where a saddle, local minimum, or
local maximum occurs.

Solution  First we find the partial derivatives f, and f; and set them simultaneously to
zero in seeking the critical points:

fo=10ye~ ) — 20x2ye~ ) = 10y(1 — 242)e ) = 0=y =0o0r1 — 22 = 0,
£ = 10xe= 0 — 2002~ = 10x(1 — 2y%)e W) = 0=x=0o0r 1 —2y> = 0.

Since both partial derivatives are continuous everywhere, the only critical points are

00.(3593H (7393 (Fa—va) = (-3~
’ ’ \/57 _\/5 3 \/55 \/5 ) \/57 \/5 E] \/51 \/5

Next we calculate the second partial derivatives in order to evaluate the discriminant
at each critical point:

fip = —20xy(1 — 2x2)e W) — 40xye’("2+-"2) = —20xy(3 — 232 ) e W),
foy = fur = 10(1 = 2x2)e= 0¥ — 2002(1 — 2x2)e~ ) = 10(1 — 2x2) (1 — 2y?)e~ "+,
fry = —20xy(1 — 2y2)e” W) — 40xye W) = —20xy(3 — 2y2)e” ),

The following table summarizes the values needed by the Second Derivative Test.

Critical
Point Frx F Fyy Discriminant D
(0, 0) 0 10 0 —100
(L 1_) 200, _20 400
V2 V2 ¢ ¢ &
(_L L) 20 20 400
V2 V2 ¢ ¢ &
(L _L) 20 20 400
NARYA e e &
(L L) 200, 20 400
V2 V2 ¢ ¢ &

From the table we find that D << 0 at the critical point (0, 0), giving a saddle; D > 0 and
for < 0 atthe critical points (l/\/ﬁ, l/\/i) and (f 1/\/_, - 'l/\/i), giving local maxi-
mum values there; and D > 0 and f,, > 0 at the critical points (— 1/ V2, 1/ \/5) and

(l / V2,-1 / \/5), each giving local minimum values.
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Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i) boundary points of the domain of f
ii) critical points (interior points where f, = f, = 0 or points where f, or f,
fails to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (a, b) and f(a, b) = f(a, b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

i) fo <O0and f,f,, — fu° > 0at (a, b) = local maximum

i) f,, > 0and ff,, — fi,” > 0at (a, b)) = local minimum

iii) fo.f,, — fi® < 0at(a, b) = saddle point

iv) fufy — fo’ = 0at(a, b) = testis inconclusive
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7  Lagrange Multipliers:

The method says that the local extreme values of a function f(X, y, z) whose variables are

subject to a constraint g(x, y, z) = 0 are to be found on the surface g = 0 among the points where
Vf=AVg

for some scalar A (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following
observation, which we state as a theorem.

The Method of Lagrange Multipliers

Suppose that f(x,y.z) and g(x,y,z) are differentiable and Vg # 0 when
g(x,v,z) = 0. To find the local maximum and minimum values of f subject to
the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and A that
simultaneously satisfy the equations

Vf = AVg and g(x,y,2) = 0. (D

For functions of two independent variables, the condition is similar, but without
the variable z.

EXAMPLE 3 Find the greatest and smallest values that the function

fx,y) = xy
takes on the ellipse (Figure 14.55)

2

2
X S
8+2—1.

Solution We want to find the extreme values of f(x, y) = xy subject to the constraint

2
X Y g
g(x,y)—8+2 1 0.

To do so, we first find the values of x, y, and A for which
Vf=AVg and glx,y) = 0.

The gradient equation in Equations (1) gives

yi+xj = %xi + Ayj,

Dr. Sarmed Altayee Page 110



Mathematics III Lecture note CHEMICAL ENGINEERING DEPARTMEN

from which we find

/\2

y = Ax, X = Ay, and y = %(/\y) = Zy,

4

sothat y = 0 or A = 2. We now consider these two cases.

Casel: Ify =0, thenx =y = 0. But (0, 0) is not on the ellipse. Hence, y # 0.
Case2: 1If y # 0, then A = 2 and x = £2y. Substituting this in the equation
g(x,y) = 0 gives

(£2y)F 2
)

=1, 4y + 4y* = 8 and y= *t1.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four
points (+2, 1), (£2,—1). The extreme values are xy = 2 and xy = —2.

The Geometry of the Solution The level curves of the function f(x,y) = xy are the
hyperbolas xy = ¢ (Figure 14.56). The farther the hyperbolas lie from the origin, the larger
the absolute value of f. We want to find the extreme values of f(x, y), given that the point
(x, y) also lies on the ellipse x> + 4y> = 8. Which hyperbolas intersecting the ellipse lie
farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent
to it, are farthest. At these points, any vector normal to the hyperbola is normal to the
ellipse, so Vf = yi + xj is a multiple (A = +2) of Vg = (x/4)i + yj. At the point
(2, 1), for example,

Vf=i+2. Vg=3i+j and Vf=2Vg.

At the point (—2, 1),

Vi=i-2j, Vg=-3i+j and Vf=-2Vg o

When subjected to the constraint g(x, y)=x?/8+y?/2-
1=0, the function f(x, y)=xy takes on extreme values
at the four points (£2, £1). These are the points on the
ellipse when Vf (red) is a scalar multiple of Vg
(blue).
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H.W

(1) Find all the local maxima, local minima, and saddle points of the functions in
Exercises 1-4.

1. f,y) =x>+xy +y? +3x— 3y +4
f,y) =2xy — 52— 2y +4x + 4y — 4
f,y) =x>+xy+3x +2y+ 5

f(x,y) = 5xy — 7x> + 3x — 6y + 2
fx,y) =2xy — x> — 23> + 3x + 4
f,y) =x> —4xy + v + 6y + 2

AN Sl

(2) Find the points on the ellipse x?>+2y?=1 where f(x, y)=xy has its extreme values..

(3) JFind the point on the plane x+2y+3z=13 closest to the point (1, 1, 1).
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