
Evolutionary Computing

Dr. Salah Al-Obaidi

Lecture #5: Representation, Mutation, and

Recombination Fall 2024

Contents

Contents i

3 Representation, Mutation, and Recombination 26

3.1 Representation and the Roles of Variation Operators . . . 26

3.2 Binary Representation . 28

3.2.1 Mutation for Binary Representation 28

3.2.2 Recombination for Binary Representation 29

One-Point Crossover 30

n-Point Crossover 30

Uniform Crossover 31

3.3 Integer Representation 32

3.3.1 Mutation for Integer Representations 32

3.3.2 Recombination for Integer Representation 34

3.4 Real-Valued or Floating-Point Representation 34

3.4.1 Mutation for Real-Valued Representation 35

3.4.2 Recombination Operators for Real-Valued Repres-

entation . 37

i

3. Representation, Mutation, and Recombin-

ation

There are two fundamental forces that form the basis of evolutionary systems:

variation and selection. In the following we discuss the EA components

behind the first one. Since variation operators work at the equivalent of the

genetic level, that is to say they work on the representation of solutions,

rather than on solutions themselves, In the following sections, we look more

closely at some commonly used representations, binary representation, as

an example, and the genetic operators that might be applied to them.

3.1 Representation and the Roles of Variation

Operators

The first stage of building any evolutionary algorithm is to decide on a

genetic representation of a candidate solution to the problem. When

choosing a representation, it is important to choose the right representation

for the problem being solved. In many cases there will be a range of options,

and getting the representation right is one of the most difficult parts of

designing a good evolutionary algorithm.

26

3.1. Representation and the Roles of Variation Operators

Mutation is the generic name given to those variation operators that use

only one parent and create one child by applying some kind of randomised

change to the representation (genotype). The form taken depends on the

choice of encoding used, which is often introduced to regulate the intensity

or magnitude of mutation. Depending on the given implementation, this

can be mutation probability, mutation rate, mutation step size, etc.

Recombination, the process whereby a new individual solution is

created from the information contained within two (or more) parent

solutions, is considered by many to be one of the most important features

in evolutionary algorithms. A lot of research activity has focused on it as

the primary mechanism for creating diversity, with mutation considered

as a background search operator. Regardless of the merits of different

viewpoints, the ability to combine partial solutions via recombination is

certainly one of the features that most distinguishes EAs from other global

optimisation algorithms.

Although the term recombination has come to be used for the more

general case, early authors used the term crossover, motivated by the

biological analogy to meiosis. Recombination operators are usually applied

probabilistically according to a crossover rate pc. Usually two parents are

selected and two offspring are created via recombination of the two parents

with probability pc; or by simply copying the parents, with probability

1 − pc.

27

3. Representation, Mutation, and Recombination

3.2 Binary Representation

It is one of the simplest representations used. This is one of the earliest

representations, and historically many genetic algorithms (GAs) have used

this representation almost independently of the problem they were trying

to solve. Here the genotype consists simply of a string of binary digits −

a bit-string. For a particular application we have to decide how long the

string should be, and how we will interpret it to produce a phenotype.

One of the problems of coding numbers in binary is that different bits

have different significance, and so the effect of a single bit mutation is

very variable. Using standard binary code has the disadvantage that the

Hamming distance between two consecutive integers is often not equal to

one. If the goal is to evolve an integer number, you would like to have equal

probabilities of changing a 7 into an 8 or a 6. However, changing 0111

to 1000 requires four bit-flips while changing it to 0110 takes just one.

Thus with a mutation operator that randomly, and independently, changes

each allele value with probability pm < 0.5, the probability of changing

7 to 8 is much less than changing 7 to 6. This can be helped by using

Gray coding, a variation on the way that integers are mapped on bit strings

where consecutive integers always have Hamming distance of one.

3.2.1 Mutation for Binary Representation

The most common mutation operator for binary encodings considers each

gene separately and allows each bit to flip (i.e., from 1 to 0 or 0 to 1)

with a small probability pm. The actual number of values changed is thus

28

3.2. Binary Representation

not fixed, but depends on the sequence of random numbers drawn, so for

an encoding of length L, on average L · pm values will be changed. In

Figure 3.1 this is illustrated for the case where the third, fourth, and eighth

random values generated are less than the bitwise mutation rate pm.

Figure 3.1: Bitwise mutation for binary encodings.

A number of studies and recommendations have been made for the choice

of suitable values for the bitwise mutation rate pm. Most binary coded

GAs use mutation rates in a range such that on average between one gene

per generation and one gene per offspring is mutated. However, it is worth

noting at the outset that the most suitable choice to use depends on the

desired outcome. For example, does the application require a population in

which all members have high fitness, or simply that one highly fit individual

is found? The former suggests a lower mutation rate, less likely to disrupt

good solutions. In the latter case one might choose a higher mutation

rate if the potential benefits of ensuring good coverage of the search space

outweighed the cost of disrupting copies of good solutions.

3.2.2 Recombination for Binary Representation

Three standard forms of recombination are generally used for binary

representations. They all start from two parents and create two children,

although all of these have been extended to the more general case where a

number of parents may be used, and there are also situations in which only

one of the offspring might be considered.

29

3. Representation, Mutation, and Recombination

One-Point Crossover

One-point crossover was the original recombination operator. It works by

choosing a random number r in the range [1, l−1] (with l the length of the

encoding), and then splitting both parents at this point and creating the

two children by exchanging the tails (Figure 3.2, top). Note that by using

the range [1, l − 1] the crossover point is prevented from falling before the

first position (r = 0) or after the last position (r = l).

Figure 3.2: One-point crossover (top) and n-point crossover with n = 2
(bottom).

n-Point Crossover

One-point crossover can easily be generalised to n-point crossover, where

the chromosome is broken into more than two segments of contiguous

genes and the offspring are created by taking alternative segments from

the parents. In practice, this means choosing n random crossover points in

[1, l − 1], which is illustrated in Figure 3.2 (bottom) for n = 2.

30

3.2. Binary Representation

Uniform Crossover

The previous two operators worked by dividing the parents into a number of

sections of contiguous genes and reassembling them to produce offspring. In

contrast to this, uniform crossover works by treating each gene independently

and making a random choice as to which parent it should be inherited from.

This is implemented by generating a string of l random variables from

a uniform distribution over [0,1]. In each position, if the value is below

a parameter p (usually 0.5), the gene is inherited from the first parent;

otherwise from the second. The second offspring is created using the inverse

mapping. This is illustrated in Figure 3.4.

Figure 3.3: Uniform crossover. The array [0.3, 0.6, 0.1, 0.4, 0.8, 0.7, 0.3,
0.5, 0.3] of random numbers and p = 0.5 were used to decide inheritance
for this example.

In our discussion so far, we have suggested that in the absence of prior

information, recombination worked by randomly mixing parts of the parents.

However, as Figure 3.2 illustrates, n-point crossover has an inherent bias in

that it tends to keep together genes that are located close to each other in the

representation. Furthermore, when n is odd (e.g., one-point crossover),

there is a strong bias against keeping together combinations of genes that

are located at opposite ends of the representation. These effects are known

as positional bias. In contrast, uniform crossover does not exhibit any

31

3. Representation, Mutation, and Recombination

positional bias. However, unlike n-point crossover, uniform crossover does

have a strong tendency towards transmitting 50% of the genes from each

parent and against transmitting an offspring a large number of coadapted

genes from one parent. This is known as distributional bias.

Other representations are also used, such as Integer and Real-Valued or

Floating-Point Representation, since binary representations are not always

the most suitable if our problem more naturally maps onto a representation

where different genes can take one of a set of values.

3.3 Integer Representation

As we mentioned before, binary representations are not always the most

suitable if our problem more naturally maps onto a representation where

different genes can take one of a set of values. One obvious example of

when this might occur is the problem of finding the optimal values for a set

of variables that all take integer values. These values might be unrestricted

(i.e., any integer value is permissible), or might be restricted to a finite set:

for example, if we are trying to evolve a path on a square grid, we might

restrict the values to the set 0,1,2,3 representing North, East, South, West.

In either case an integer encoding is probably more suitable than a binary

encoding.

3.3.1 Mutation for Integer Representations

For integer encoding, there are two principal forms of mutation used, both

of which mutate each gene independently with user-defined probability pm.

32

3.3. Integer Representation

Random Resetting: Here the bit-flipping mutation of binary

encoding is extended to random resetting. In each position

independently, with probability pm, a new value is chosen at random

from the set of permissible values. This is the most suitable operator

to use when the genes encode for cardinal attributes since all other

gene values are equally likely to be chosen.

Creep Mutation: This scheme was designed for ordinal attributes

and works by adding a small (positive or negative) value to each gene

with probability pm. Usually these values are sampled randomly for

each position, from a distribution that is symmetric about zero, and

is more likely to generate small changes than large ones. It should be

noted that creep mutation requires a number of parameters controlling

the distribution from which the random numbers are drawn, and hence

the size of the steps that mutation takes in the search space. Finding

appropriate settings for these parameters may not be easy, and it is

sometimes common to use more than one mutation operator in tandem

from integer-based problems. For example, both a “big creep” and a

“little creep” operator are used. Alternatively, random resetting might

be used with low probability, in conjunction with a creep operator

that tended to make small changes relative to the range of permissible

values.

33

3. Representation, Mutation, and Recombination

3.3.2 Recombination for Integer Representation

For representations where each gene has a finite number of possible allele

values (such as integers), it is normal to use the same set of operators as

for binary representations. On the one hand, these operators are valid: the

offspring would not fall outside the given genotype space. On the other

hand, these operators are also sufficient: it usually does not make sense

to consider ‘blending’ allele values of this sort. For example, even if genes

represent integer values, averaging an even and an odd integer yields a

non-integral result.

3.4 Real-Valued or Floating-Point

Representation

Often, the most sensible way to represent a candidate solution to a problem

is to have a string of real values. This occurs when the values that we

want to represent as genes come from a continuous rather than a discrete

distribution — for example, if they represent physical quantities such as the

length, width, height, or weight of some component of a design that can be

specified within a tolerance smaller than integer values. An example might

be if we wished to use an EA to evolve the weights on the connections

between the nodes in an artificial neural network. Of course, on a computer

the precision of these real values is actually limited by the implementation,

so we will refer to them as floating-point numbers. The genotype for a

solution with k genes is now a vector ⟨x1, ..., xk⟩ with xi ∈ R.

34

3.4. Real-Valued or Floating-Point Representation

When designing the encoding and variation operators, it is worth

considering whether there are any natural relations between the possible

values that an attribute can take. This might be obvious for ordinal

attributes such as integers (2 is more like 3 than it is 389), but for cardinal

attributes such as the compass points above, there may not be a natural

ordering.

3.4.1 Mutation for Real-Valued Representation

For floating-point representations, it is normal to ignore the discretisation

imposed by hardware and consider the allele values as coming from a

continuous rather than a discrete distribution, so the forms of mutation

described above are no longer applicable. Instead, it is common to change

the allele value of each gene randomly within its domain given by a lower

Li and upper Ui bound, resulting in the following transformation:

⟨x1, ..., xn⟩ → ⟨x′

1, ..., x
′

n⟩, where xi, x
′

i ∈ [Li, Ui]

As with integer representations, two types can be distinguished according

to the probability distribution from which the new gene values are drawn:

uniform and nonuniform mutation.

Uniform Mutation For this operator the values of x
′

i are drawn

uniformly randomly from [LiUi]. This is the most straightforward

option, analogous to bit-flipping for binary encodings and the random

resetting for integer encodings.

35

3. Representation, Mutation, and Recombination

Nonuniform Mutation Perhaps the most common form of nonuni-

form mutation used with floating-point representations takes a form

analogous to the creep mutation for integers. It is designed so that

usually, but not always, the amount of change introduced is small.

This is achieved by adding to the current gene value an amount

drawn randomly from a Gaussian distribution with mean zero and

user-specified standard deviation, and then shrinking the resulting

value to the range [Li, Ui] if necessary. This distribution, shown in

Equation 3.1, has the feature that the probability of drawing a random

number with any given magnitude is a rapidly decreasing function of

the standard deviation σ. Approximately, two-thirds of the samples

drawn will lie within plus or minus one standard deviation, which

means that most of the changes made will be small, but there is a

nonzero probability of generating very large changes since the tail of

the distribution never reaches zero

p(∆xi) = 1
σ

√
2π

· e− (∆xi−ξ)2

2σ2 (3.1)

Thus, the σ value is a parameter of the algorithm that determines

the extent to which given values xi are perturbed by the mutation

operator. For this reason σ is often called the mutation step size. It is

normal practice to apply this operator with probability one per gene,

and instead the mutation parameter is used to control the standard

deviation of the Gaussian and hence the probability distribution of

the step sizes taken.

36

3.4. Real-Valued or Floating-Point Representation

3.4.2 Recombination Operators for Real-Valued

Representation

In general, we have two options for recombining two floating-point strings:

• First, using an analogous operator to those used for bit-strings, but

now split between floats. In other words, an allele is one floating-point

value instead of one bit. This has the disadvantage that only mutation

can insert new values into the population, since recombination only

gives us new combinations of existing values. Recombination operators

of this type for floating-point representations are known as discrete

recombination and have the property that if we are creating an

offspring z from parents x and y, then the allele value for gene i is

given by zi = xi or yi with equal likelihood.

• Second, using an operator that, in each gene position, creates a new

allele value in the offspring that lies between those of the parents.

Using the terminology above, we have zi = αxi +(1−α)yi for some

α in [0, 1]. In this way, recombination is now able to create new gene

material, but it has the disadvantage that as a result of the averaging

process the range of the allele values in the population for each gene

is reduced. Operators of this type are known as intermediate or

arithmetic recombination.

There three types of arithmetic recombination. In all of these, the choice

of the parameter α is sometimes made at random over [0, 1], but in practice

37

3. Representation, Mutation, and Recombination

it is common to use a constant value, often 0.5 (in which case we have

uniform arithmetic recombination).

1. Simple Arithmetic Recombination: First pick a recombination

point k. Then, for child 1, take the first k floats of parent 1 and put

them into the child. The rest is the arithmetic average of parent 1

and 2:

Child1 : ⟨x1, ..., xk, α · yk+1 + (1 − α) · xk+1, ..., α · yn + (1 − α) · xn⟩.

Child 2 is analogous, with x and y reversed (Figure 3.4 top).

2. Single Arithmetic Recombination: Pick a random allele k. At

that position, take the arithmetic average of the two parents. The

other points are the points from the parents, i.e.:

Child1 : ⟨x1, ..., xk−1, α · yk + (1 − α) · xk, xk+1, ..., xn⟩.

The second child is created in the same way with x and y reversed

(Figure 3.4, middle).

3. Whole Arithmetic Recombination: This is the most commonly

used operator and works by taking the weighted sum of the two

parental alleles for each gene, i.e.:

Child1 = α · x + (1 − α) · y, Child2 = α · y + (1 − α) · x.

This is illustrated in Figure 3.4, bottom. As the example shows, if

α = 1/2 the two offspring will be identical for this operator.

38

3.4. Real-Valued or Floating-Point Representation

Figure 3.4: Simple arithmetic recombination with k = 6, α = 1/2 (top),
single arithmetic recombination with k = 8, α = 1/2 (middle), whole
arithmetic recombination with α = 1/2 (bottom).

39

	Contents
	Representation, Mutation, and Recombination
	Representation and the Roles of Variation Operators
	Binary Representation
	Mutation for Binary Representation
	Recombination for Binary Representation
	One-Point Crossover
	n-Point Crossover
	Uniform Crossover

	Integer Representation
	Mutation for Integer Representations
	Recombination for Integer Representation

	Real-Valued or Floating-Point Representation
	Mutation for Real-Valued Representation
	Recombination Operators for Real-Valued Representation

