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Transient Analysis of RL, RC, and RLC Circuits will be divided into two parts, 

the first one is the natural response and the second one is the step response. 

The natural response of a circuit refers to the behavior (in terms of voltages and 

currents) of the circuit itself, with no external sources of excitation. 

The step response of a circuit is its behavior when the excitation is the step 

function, which may be a voltage or a current source. 

1.1 Natural Response of RL Circuits 

The following circuit in figure 1.1 is an example of an RL circuit. The switch is 

closed for a long time and the inductor appears as a short circuit. The goal is to 

find 𝑣(𝑡) and 𝑖(𝑡) after the switch is opened (𝑡 ≥ 0). 

 

Figure 1.1 

At time 𝑡 ≥ 0, the current 𝑖(𝑡) can be find using Kirchhoff’s voltage law to obtain 

an expression involving 𝑖, 𝑅, 𝑎𝑛𝑑 𝐿. 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 0             First order differential equation 

𝑑𝑖

𝑑𝑡
𝑑𝑡 = −

𝑅

𝐿
𝑖𝑑𝑡         Multiply both sides by a differential time 𝑑𝑡  

𝑑𝑖

𝑖
= −

𝑅

𝐿
𝑑𝑡                Divide through by 𝑖 

Integrating both sides of the above equation using x and y as variables of 
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integration yields: 

∫
𝑑𝑥

𝑥
= −

𝑅

𝐿
∫ 𝑑𝑦

𝑡

𝑡𝑜

𝑖(𝑡)

𝑖(𝑡𝑜)

 

𝑖(𝑡𝑜); is the current corresponding to the time 𝑡𝑜 and 𝑖(𝑡) is the current 

corresponding to time t. Here𝑡𝑜 = 0, therefore, carrying out the indicated 

integration gives: 

𝑙𝑛
𝑖(𝑡)

𝑖(0)
= −

𝑅

𝐿
𝑡 , 𝑖(0): is the initial condition  

𝑖(𝑡) = 𝑖(0)𝑒−(𝑅/𝐿)𝑡 

This shows that the natural response of the RL circuit is an exponential decay of 

the initial current. At time t = 0 the inductor has an initial current 𝑖(0) =  𝐼0, then: 

𝑖(𝑡) = 𝐼𝑜𝑒−(𝑅/𝐿)𝑡,  𝑡 ≥ 0       (Natural response of an RL circuit) 

The above equation shows that the current starts from an initial value 𝐼0 and 

decreases exponentially toward zero as t increases as shown in figure 1.2. 

 

Figure 1.2 

The coefficient of 𝑡, namely, R/L determines the rate at which the current or 

voltage approaches zero. The reciprocal of this ratio is the time constant of the 

circuit:  

The time constant of a circuit is the time required for the response to decay to 

a factor of 1/e or 36.8 percent of its initial value. 
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Calculating the natural response of an RL circuit can be summarized as follows: 

1. Find the initial current 𝑰𝟎, through the inductor. 

2. Find the time constant of the circuit 𝝉 =
𝑳

𝑹
. 

3. Use the equation [𝒊(𝒕) = 𝑰𝒐𝒆−(𝑹/𝑳)𝒕] to generate 𝒊(𝒕) from 𝑰𝟎 and 𝝉. 

1.2 Natural Response of RC Circuits  

The natural response of an RC circuit is developed from the circuit shown in 

figure 1.3. The switch has been closed for a long time (t < 0). Recall that a 

capacitor behaves as an open circuit in the presence of a constant voltage. 

At time t > 0, the switch is moved to position b and the voltage source and the 

resistance R1 are disconnected. 

 

Figure 1.3 

Summing the currents in the resultant circuit: 

 

The same mathematical techniques can be used to obtain the solution for 𝑣(𝑡) 

 

The initial capacitor voltage is 𝑣(0) = 𝑉0 (the voltage source voltage) 

The time constant for the RC circuit is 𝝉 = 𝑹𝑪  

𝑣(𝑡) = 𝑉0𝑒−𝑡/𝜏, 𝑡 ≥ 0,            (The natural response of an RC circuit) 

This indicates that the natural response of an RC circuit is an exponential decay 

of the initial voltage, governed by the time constant RC as shown in figure 1.4 

τ = timeconstant =
L

R
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Figure 1.4 

The expressions for 𝑖, 𝑝, 𝑎𝑛𝑑 𝜔 are: 

 

Calculating the natural response of an RC circuit can be summarized as follows: 

1. Find the initial voltage 𝑽𝟎, across the capacitor. 

2. Find the time constant of the circuit 𝝉 = 𝑹𝑪 

3. Use the equation [𝒗(𝒕) = 𝑽𝟎𝒆−
𝒕

𝝉] to generate 𝒗(𝒕) from 𝑽𝟎 and 𝝉 

1.3 The Step Response of an RL Circuit 

Consider the circuit in figure 1.5, the switch is opened for a long time, the goal is 

to find an expression for the current in the circuit and the voltage across the 

inductor. 

At time t = 0 when the switch is closed using Kirchhoff’s voltage law 
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Figure 1.5 

The first step in this approach is to solve the above equation for the derivative 

di/dt; 

  

Multiply both sides of the above equation by a differential time 𝑑𝑡 results in: 

              

 

Using x and y as variables for the integration, we obtain 

 

Where I0 is the current at 𝑡 = 0 and 𝑖(𝑡) is the current at any 𝑡 > 0 

 

The step response of an RL circuit is: 

 

When the initial energy in the inductor is zero, I0 is zero: 

 

One time constant after the switch has been closed, the current will have reached 

approximately 63% of its final value (figure 1.6), or 
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The voltage across an inductor is 𝐿𝑑𝑖/𝑑𝑡 so: 

 

The voltage across the inductor is zero before the switch is closed. The above 

Equation indicates that the inductor voltage jumps to Vs – I0R at the instant the 

switch is closed and then decays exponentially to zero as shown in figure 1.7. 

 

Figure 1.6: The step response of the RL circuit 

 

Figure 1.7: Inductor voltage versus time 

Notes: 
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▪ The transient response is the circuit’s temporary response that will die out 

with time. 

▪ The steady-state response is the behavior of the circuit a long time after an 

external excitation is applied. 

i(t) = i(∞) + [i(0) − i(∞)]e
−t

τ  Compare with the step response of the RL circuit  

1.4 The Step Response of an RC Circuit 

Consider the RC circuit in figure 1.8, summing the currents in the circuits: 

 

 

 

Figure 1.8 

Comparing the above equation with the equation for the step response of the RL 

circuit reveals that the form of the solution for 𝑣𝑐 is the same as that for the current 

in the inductive circuit.  

The Step Response of an RC circuit is: 

  

A similar derivation for the current in the capacitor yields the differential 

equation: 

       

 𝑉0, is the initial value of the voltage across the capacitor 

 

 

 

(Dividing by C) 
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Example 1.1: The switch in the circuit shown in figure 1.9 has been closed for 

a long time before it is opened at t = 0. Find: 

(a) 𝑖𝐿(𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0  

(b) 𝑖𝑜(𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0+  

(c) 𝑣𝑜(𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0 

(d) The percentage of the total energy stored in the 2 H inductor that is 

dissipated in the 10 Ω resistor 

  

Figure 1.9 

Solution: 

a) Req =  2 + 10||40 = 10Ω 

The time constant of the circuit is L/ Req = 0.2 s 

 

b) using current division 

 

The inductor behaves as a short circuit before the switch being opened, 

producing an instantaneous change in the current 𝑖𝑜. Then, 

 

c) Using ohms law 

 

d) The power dissipated in the 10Ω resistor is: 
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The total energy dissipated in the 10Ω resistor is: 

 

The initial energy stored in the 2 H inductor is 

 

Therefore, the percentage of energy dissipated in the 10Ω resistor is: 

256

400
(100) = 64% 

  

Example 1.2: The switch in the circuit in figure 1.10 has been in position (a) 

for a long time. At 𝑡 = 0 the switch moves from position (a) to position (b). 

The switch is a make-before-break type; that is, the connection at position b is 

established before the connection at position (a) is broken, so there is no 

interruption of current through the inductor. 

a) Find the expression for 𝑖(𝑡) when 𝑡 ≥  0 

b) What is the initial voltage across the inductor just after the switch has been 

moved to position b? 

c) How many milliseconds after the switch has been moved does the inductor 

voltage equal 24 V? 

d) Plot both 𝑖(𝑡) and 𝑣(𝑡)versus t. 

 

  Figure 1.10  
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Solution:  

a) When the switch is in position (a), the 200 mH inductor is a short circuit 

across the 8A current source. Therefore, the inductor carries an initial 

current of 8 A.  

When the switch is in position (b), the final value of 𝑖 will be 12 A  

The time constant of the circuit is 100 ms. 

       

b) The voltage across the inductor is 

  

The initial inductor voltage is 40 V 

c) We find the time at which the inductor voltage equals 24 V by solving the 

expression (24 = 40𝑒−10𝑡) 

 

d) Figure 1.11 shows the graphs of 𝑖(𝑡) and 𝑣(𝑡) versus t. Note that the instant 

of time when the current equals zero corresponds to the instant of time when 

the inductor voltage equals the source voltage of 24 V, as predicted by 

Kirchhoff’s voltage law. 
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Figure 1.11 

  

Example 1.3: The two switches in the circuit shown in figure 1.12 have been 

closed for a long time. At 𝑡 = 0 switch 1 is opened. Then, 35 ms later, switch 

2 is opened.  

a) Find 𝑖𝐿(𝑡) 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 35𝑚𝑠 

b) Find 𝑖𝐿(𝑡) 𝑓𝑜𝑟 𝑡 ≥ 35𝑚𝑠 

c) What percentage of the initial energy stored in the 150 mH inductor is 

dissipated in the 18 Ω resistor?  

d) Repeat (c) for the 3 Ω resistor.  

e) Repeat (c) for the 6 Ω resistor 

  
Figure 1.12 

Solution: 

a) For t < 0 both switches are closed, causing the 150 mH inductor to short-

circuit the resistor as shown in figure 1.13. 
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Figure 1.13 

For 0 ≤ 𝑡 ≤ 35𝑚𝑠 switch 1 is open (switch 2 is closed), which disconnects 

the 60 V voltage source and the 4 Ω and 12 Ω resistors from the circuit, the 

resultant circuit is shown in figure 1.14. 

  

Figure 1.14 

𝑅𝑒𝑞 =  9||18 =  6 Ω , the time constant of the circuit is (
150

6
) ∗ 10−3 =

25 𝑚𝑠 

  

b) When t > 35ms the value of the inductor current is: 

𝑖𝐿 = 6𝑒−1.4 = 1.48 𝐴 

Thus, when switch 2 is opened, the circuit reduces to the one shown in figure 

1.15. 

  

Figure 1.15 

The time constant changes to (
150

9
) ∗ 10−3 = 16.67 𝑚𝑠 
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c) The 18 Ω resistor is in the circuit only during the first 35 ms of the switching 

sequence. During this interval, the voltage across the resistor is: 

 

The power dissipated in the 18 Ω resistor is: 

  

Hence the energy dissipated is: 

 

The initial energy stored in the 150 mH inductor is: 

 

Therefore, 31.31% of the initial energy stored in the 150 mH inductor is 

dissipated in the 18 Ω resistor. 

d) For 0 ≤ 𝑡 ≤ 35𝑚𝑠 the voltage across the 3 Ω resistor is: 

𝑣3Ω = (
𝑣𝐿

9
) (3) =

1

3
𝑣𝐿 = −12𝑒−40𝑡  𝑉 

Therefore, the energy dissipated in the 3 Ω resistor in the first 35 ms is: 
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For 𝑡 ≥ 35𝑚𝑠 the current in the 3 Ω resistor is: 

 

Hence the energy dissipated in the 3 Ω resistor for 𝑡 ≥ 35𝑚𝑠 is: 

 

The total energy dissipated in the 3 Ω resistor is: 

 

The percentage of the initial energy stored is: 

618.24

2700
∗ 100 = 22.90%  

e) Because the 6 Ω resistor is in series with the 3 Ω resistor, the energy 

dissipated and the percentage of the initial energy stored will be twice that 

of the 3 Ω resistor: 

𝑤6Ω(𝑡𝑜𝑡𝑎𝑙) = 1236.48 mJ 

And the percentage of the initial energy stored is 45.80%. 

1236.48 + 618.24 + 845.27 = 2699.99 mJ 

31.31 + 22.90 + 45.80 = 100.01%. 
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1.5 Natural Response of Series RLC Circuits 

Consider the series RLC circuit shown in figure 1.16. The circuit is being excited 

by the energy initially stored in the capacitor and inductor.  

 
Figure 1.16 

The energy is represented by the initial capacitor voltage 𝑉0 and initial inductor 

current 𝐼0. Thus, at t = 0, 

 

Applying KVL around the loop 

 

To eliminate the integral, we differentiate with respect to t and rearrange terms. 

We get: 

 

(Second-order differential equation) 

To solve the above equation, we need two initial conditions such as the initial 

value of 𝑖 and its first derivative or initial values of some 𝑖 and 𝑣. The initial value 

of the derivative of 𝑖: 

                   

Let 𝑖 = 𝐴𝑒𝑠𝑡, A and s are constants to be determined  
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This quadratic equation is known as the characteristic equation of the Second-

order differential. The two roots of the above equation are: 

 

 

 

▪ The roots s1 and s2 are called natural frequencies measured in nepers per 

second (Np/s) because they are associated with the natural response of the 

circuit. 

▪ 𝜔0 is known as the resonant frequency or strictly as the undamped natural 

frequency, expressed in radians per second (rad/s). 

▪ α is the neper frequency or the damping factor, expressed in nepers per second. 

 

There are two possible solutions for 𝑖 

  

Thus, the natural response of the series RLC circuit is: 
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The constants A1 and A2 are determined from the initial values 𝑖(0) and 
𝑑𝑖(0)

𝑑𝑡
  

a) If 𝜶 > 𝝎𝟎, we have the overdamped case. 

b) If 𝜶 = 𝝎𝟎, we have the critically damped case. 

c) If 𝜶 < 𝝎𝟎, we have the underdamped case 

Overdamped Case (𝜶 > 𝝎𝟎) 

 

Critically Damped Case (𝜶 = 𝝎𝟎) 

 

Underdamped Case (𝜶 < 𝝎𝟎) 

 

 

 

▪ 𝑗 = √−1  

▪ 𝜔𝑑 = √𝜔0
2 − 𝛼2: is called the damping natural frequency.  

▪ 𝜔0: the undamped natural frequency 

The natural response is: 

 

Using Euler’s identities 

 

  

Replacing (A1 + A2) constants and j (A1 - A2) with constants B1and B2  
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Figure 1.17; (a) Overdamped response, (b) critically damped response, (c) underdamped 

response. 

Example 1.4: Find 𝑖(𝑡) in the circuit of Fig. 1.18. Assume that the circuit has 

reached a steady-state at 𝑡 = 0. 

   

Figure 1.18 

Solution: 

For t < 0, the switch is closed. The capacitor acts like an open circuit while the 

inductor acts like a shunted circuit. The equivalent circuit is shown in figure 
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1.19 (a). Thus, at t = 0, 

 

              

Figure 1.19: (a) for t < 0, (b) for t > 0. 

Where 𝑖(0) is the initial current through the inductor and is the initial voltage 

across the capacitor. For t > 0 the switch is opened and the voltage source is 

disconnected. The equivalent circuit is shown in figure 1.19 (b) which is a 

source free series RLC circuit. Notice that the 3 Ω and 6 Ω resistors, which are 

in series in figure 1.19 when the switch is opened, have been combined to give 

R = 9 Ω in figure 1.19 (b). The roots are calculated as follows: 

 

 

Hence, the response is underdamped (𝛼 < 𝜔); that is, 

                                     

Now obtain A1 and A2 using the initial conditions. At t = 0; 

 

  

Note that 𝑣(0) =  𝑉0  =  −6𝑉 is used, because the polarity of v in figure 1.19 

eq. (b) 

eq. (a) 
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(b) is opposite that in figure 1.16. Taking the derivative of 𝑖(𝑡) in equation (a): 

 

Imposing the condition in equation (b) at t = 0 gives: 

 

But A1 = 1. Then 

 

Substituting the values of A1 and A2 in equation (a) yields the complete 

solution as: 

 
 

1.6 Natural Response of Parallel RLC Circuits 

Consider the parallel RLC circuit shown in figure 1.20. Assume initial inductor 

current 𝐼0 and initial capacitor voltage 𝑉0 

 
Figure 1.20 

 

 

Applying KCL at the top node gives 
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Taking the derivative with respect to t and dividing it by C results in 

  

 

The roots of the characteristic equation are 

 

   
Overdamped Case (𝜶 > 𝝎𝟎) 

 

Critically Damped Case (𝜶 = 𝝎𝟎) 

 

Underdamped Case (𝜶 < 𝝎𝟎) 

 
The constants A1 and A2 in each case can be determined from the initial 

conditions. We need 𝑣(0) and 
𝑑𝑣(0)

𝑑𝑡
.  
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Example 1.5: In the parallel circuit of figure 1.21, find v(t) for t > 0, 

assuming v(0) = 5V, i(0) = 0A, L = 1H, and C = 10mF. Consider these 

cases: R = 1.923 Ω, R = 5 Ω, and R = 6.25 Ω 

 

Figure 1.21 

Solution: 

Case 1: If R = 1.923 Ω  

 
Since α > ω0 in this case, the response is overdamped. The roots of the 

characteristic's equation are: 

 

And the corresponding response is: 

 

Applying the initial conditions to get A1 and A2: 

 

 

Differentiating v(t) 
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Then A1 = −0.2083 and A2 =  5.208 

Substituting A1 and A2 in the v(t)  equation yields: 

𝑣(𝑡) = −0.2083 𝑒−2𝑡 + 5.208 𝑒−50𝑡  V 

Case 2: R = 5 Ω 

 

While ω0 remains the same. Since α = ω0 = 10, the response is critically 

damped. Hence, S1 = S2 = −10 and 

 

Applying the initial conditions to get A1 and A2: 

 

Differentiating v(t): 

 

At t = 0, 

−100 = −10A1 + A2 

A1 = 5 and A2 = −50, thus: 

𝑣(𝑡) = (5 − 50𝑡)𝑒−10𝑡  V 

Case 3: R = 6.25 Ω 

 

While ω0 remains the same. As α < ω0in this case, the response is 

underdamped. The roots of the characteristic equation are 

 

Then, 
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Now obtain A1 and A2 as 

 

 

Differentiating 𝑣(𝑡) 

 

At 𝑡 = 0, 

−80 = −8 A1 + 6 A2; 

A1 = 5 and A2 = −6.667 

𝐯(𝐭) = (𝟓 𝐜𝐨𝐬𝟔𝐭 − 𝟔. 𝟔𝟔𝟕 𝐬𝐢𝐧𝟔𝐭)𝐞−𝟖𝐭  𝐕 

Note; by increasing the value of R, the degree of damping decreases, and the 

response differ as shown in figure 1.22.  

 
Figure 1.22 
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1.7 Step Response of Series RLC Circuits 

Consider the series RLC circuit shown in figure 1.23 

 
Figure 1.23 

Applying KVL around the loop for t > 0, 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝑣 = 𝑉𝑠, 𝑖 = 𝐶

𝑑𝑣

𝑑𝑡
 

𝑑2𝑣

𝑑𝑡2
+

𝑅

𝐿

𝑑𝑣

𝑑𝑡
+

𝑣

𝐿𝐶
=

𝑉𝑠

𝐿𝐶
 

Which has the same form as the equation of the natural response of the series 

RLC. The solution to the above equation has two components: the transient 

response and the steady-state response that is: 

𝑣(𝑡) = 𝑣𝑡(𝑡) + 𝑣𝑠𝑠(𝑡) 

The transient response is the component of the total response that dies out with 

time. The form of the transient response is the same as the form of the solution 

obtained in Section 1.5 for the natural response circuit. Therefore, the transient 

response for the overdamped, underdamped, and critically damped cases are: 

 

The steady-state response is the final value of 𝑣(𝑡). In the circuit in figure 1.23, 

the final value of the capacitor voltage is the same as the source voltage 𝑉𝑠. Hence, 

𝑣𝑠𝑠 = 𝑣(∞) = 𝑉𝑠 

Thus, the complete solutions for the overdamped, underdamped, and critically 

damped cases are: 
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Example 1.6: For the circuit in figure 1.24, find 𝑣(𝑡) and 𝑖(𝑡) for 𝑡 > 0. 

Consider these cases: 𝑅 = 5 Ω , 𝑅 = 4 Ω 𝑎𝑛𝑑 𝑅 = 1 Ω 

 

Figure 1.24 

Solution: 

Case 1: 𝑅 = 5 Ω  

For 𝑡 < 0  the switch is closed for a long time. The capacitor behaves like an 

open circuit while the inductor acts like a short circuit. The initial current 

through the inductor is: 

 

The initial voltage across the capacitor is the same as the voltage across the 1 Ω 

resistor; that is, 𝑣(0) = 1𝑖(0) = 4𝑉 

For 𝑡 > 0 the switch is opened so that we have the 1 Ω resistor disconnected. 

What remains is the series RLC circuit with the voltage source. The 

characteristic roots are determined as follows: 

 

Since α > ω0we have the overdamped natural response. The total response is 
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therefore 

 

Where, 𝑣𝑠𝑠 is the steady-state response. It is the final value of the capacitor 

voltage. In figure 1.24, 𝑣𝑠𝑠 = 24 𝑉 Thus 

 

To find A1 and A2 using the initial conditions: 

𝑣(0) = 4 = 24 + 𝐴1 + 𝐴2            −24 = 𝐴1 + 𝐴2  

The current through the inductor cannot change abruptly and is the same current 

through the capacitor at 𝑡 = 0 because the inductor and capacitor are now in 

series. Hence: 

        

     

𝐴1 = −64/3 𝑎𝑛𝑑 𝐴2 = 4/3. Substituting in the voltage response equation: 

 

Since the inductor and capacitor are in series for 𝑡 > 0, the inductor current is 

the same as the capacitor current. Then: 

𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
 

𝑖(𝑡) =
4

3
(4𝑒−𝑡 − 𝑒−4𝑡) 𝐴 

Case 2:(𝑅 = 4 Ω) & Case 3: (𝑅 = 1 Ω)   H.W   

Ans: 
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Figure 1.25 
 

1.8 Step Response of Parallel RLC Circuits 

Consider the parallel RLC circuit shown in figure 1.26: 

 
Figure 1.26 

Applying KCL at the top node for t > 0 

   

 
The solution to the above equation has two components: the transient response 

and the steady-state response that is: 

𝑖(𝑡) = 𝑖𝑡(𝑡) + 𝑖𝑠𝑠(𝑡) 



Electrical Networks                                                                Dr. Mustafa Rashid 

 
29 

 

 

The constants A1 and A2 in each case can be determined from the initial 

conditions for 𝑖 𝑎𝑛𝑑 𝑑𝑖/𝑑𝑡. The equation above only applies for finding the 

inductor current 𝑖𝐿 = 𝑖. But once the inductor current is known, we can find 𝑣 =

𝐿𝑑𝑖/𝑑𝑡 that is the same voltage across the inductor, capacitor, and resistor.  

Example 1.7: In the circuit of figure 1.27, find 𝑖(𝑡) 𝑎𝑛𝑑 𝑖𝑅(𝑡) 𝑓𝑜𝑟 𝑡 >  0. 

 

Figure 1.27 

Here, 𝑢(𝑡): unit step function 

𝑢(𝑡) = {
1, 𝑡 > 0
0, 𝑡 < 0

} 

Solution: 

For 𝑡 < 0 the switch is open, and the circuit is partitioned into two independent 

sub-circuits. The 4-A current flows through the inductor, so that 𝑖(0) = 4 𝐴. 

Since 30𝑢(−𝑡) = 30 when 𝑡 < 0 and 0 when 𝑡 > 0 the voltage source is 

operative for 𝑡 < 0. The capacitor acts like an open circuit and the voltage 

across it is the same as the voltage across the 20 Ω resistor connected in parallel 

with it. By voltage division, the initial capacitor voltage is: 

 

For 𝑡 > 0 the switch is closed, and we have a parallel RLC circuit with a current 
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source. The voltage source is zero which means it acts like a short circuit. The 

two 20 Ω resistors are now in parallel. They are combined to give 𝑅 = 10 Ω. 

The characteristic roots are determined as follows: 

 

𝑠1 = −11.978 𝑎𝑛𝑑 𝑠2 = −0.5218 

Since α > ω0 we have the overdamped case. Hence: 

 

𝐼𝑠 = 4 𝐴, is the final value of 𝑖(𝑡). Using the initial conditions to determine A1 

and A2. At 𝑡 = 0:  

𝑖(0) = 4 = 4 + 𝐴1 + 𝐴2, then,  𝐴1 = −𝐴2 

Taking the derivative of 𝑖(𝑡) 

 
So that at 𝑡 = 0; 

 

 

 

Thus 𝐴1 = −0.0655 𝑎𝑛𝑑 𝐴2 = 0.0655. Substituting A1 and A2 gives the 

complete solution: 

 

From 𝑖(𝑡), we can obtain 𝑣(𝑡) = 𝐿𝑑𝑖/𝑑𝑡 
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Homework 

H.W 1.1: In the circuit in figure 1.28, the switch has been closed for a long 

time before opening at 𝑡 = 0. 

a) Find the value of L so that 𝑣𝑜(𝑡) equals 0.5 𝑣𝑜(0) when 𝑡 = 1 ms 

b) Find the percentage of the stored energy that has been dissipated in the 10-

Ω resistor when 𝑡 = 1 ms 

 

Figure 1.28 

Ans: (a) L= 14.43mH, (b) 75 % 

H.W 1.2: The switch in the circuit in figure 1.29 has been in the left position 

for a long time. At 𝑡 = 0 it moves to the right position and stays there. 

a) Write the expression for the capacitor voltage, 𝑣(𝑡) for t ≥ 0 

b) Write the expression for the current through the 40-k Ω resistor, 𝑖(𝑡) for t ≥ 

0,  

 

Figure 1.29 

Ans: 𝒗(𝒕) = (𝟖𝟎𝒆−𝟑𝟕𝟓𝒕) 𝑽, 𝒕 ≥  𝟎,            𝒊(𝒕) = (𝟏. 𝟔𝒆−𝟑𝟕𝟓𝒕) 𝒎𝑨, 𝒕 ≥  𝟎 
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H.W 1.3: The current and voltage at the terminals of the inductor in the circuit 

in figure 1.30 are: 

𝑖(𝑡) = (4 + 4𝑒−40𝑡) A, t ≥  0 

𝑣(𝑡) = (−80𝑒−40𝑡) V, t ≥  0+ 

a) Specify the numerical values of Vs, R, Io, and L. 

b) How many milliseconds after the switch has been closed does the energy 

stored in the inductor reach 9 J? 

 

Figure 1.30 

Ans: Vs=80 V, R=20-Ω, Io=8A, L=0.5H and t = 17.33ms 

H.W 1.4: The switch in the circuit seen in figure 1.31 has been in position (a) 

for a long time. At 𝑡 = 0 the switch moves instantaneously to position (b). 

For 𝑡 ≥ 0, find  

a) 𝑣𝑜(𝑡) 

b) 𝑖𝑜(𝑡) 

 

Figure 1.31 

Ans: 𝒗𝒐(𝒕) = −𝟖𝟎 + 𝟏𝟑𝟎𝒆−𝟑𝟏𝟐𝟓𝒕 𝑽, 𝒊𝒐(𝒕) = 𝟏𝟑𝒆−𝟑𝟏𝟐𝟓𝒕 + 𝟐 𝒎𝑨 
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H.W 1.5: The switch in the circuit shown in figure 1.32 has been closed for a 

long time. The switch opens at 𝑡 = 0. Find 𝑣𝑜(𝑡) for 𝑡 ≥  0 

 

Figure 1.32 

Ans: 𝒗𝒐(𝒕) = −𝟔. 𝟔𝟕𝒆−𝟐𝟎𝟎𝒕 − 𝟏𝟑𝟑. 𝟑𝟑 𝒆−𝟖𝟎𝟎𝒕  𝑽,              𝒕 ≥  𝟎 

H.W 1.6: The two switches in the circuit seen in figure 1.33 operate 

synchronously. When switch 1 is in position a, switch 2 is closed. When switch 

1 is in position (b), switch 2 is open. Switch 1 has been in position (a) for a long 

time. At 𝑡 = 0 it moves instantaneously to position b. Find 𝑣𝑐(𝑡) for 𝑡 ≥  0 

 

Figure 1.33 

Ans: 𝒗𝒄(𝒕) = 𝟔𝟎 − 𝟏𝟓𝟎𝒆−𝟓𝟎𝒕𝐜𝐨𝐬𝟓𝟎𝐭 − 𝟐𝟎𝟎 𝒆−𝟓𝟎𝒕𝒔𝒊𝒏𝟓𝟎𝒕  𝑽,              𝒕 ≥  𝟎 
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HW 1.7: The two switches in the circuit seen in figure 1.34 operate 

synchronously. When switch 1 is in position (a), switch 2 is in position (d). 

When switch 1 moves to position (b), switch 2 moves to position (c). Switch 1 

has been in position (a) for a long time. At 𝑡 = 0, the switches move to their 

alternate positions. Find 𝑣𝑜(𝑡) for 𝑡 ≥  0. 

 

Figure 1.34 

Ans: 𝒗𝒐(𝒕) = 𝟏𝟎𝟎𝒆−𝟒𝟎𝟎𝒕 𝒄𝒐𝒔(𝟑𝟎𝟎𝒕) − 𝟖𝟎𝟎𝒆−𝟒𝟎𝟎𝒕 𝒔𝒊𝒏(𝟑𝟎𝟎𝒕)  𝑽 ,           𝒕 ≥  𝟎 

HW 1.8: The switch in the circuit in figure 1.35 has been in the left position 

for a long time before moving to the right position at 𝑡 = 0. Find  

a) 𝑖𝐿(𝑡) for 𝑡 ≥  0 

b) 𝑣𝐶(𝑡) for 𝑡 ≥  0 

 

Figure 1.35 

Ans: 𝒊𝑳(𝒕) = 𝟎. 𝟏 + 𝟎. 𝟓𝒆−𝟐𝟎𝟎𝒕 − 𝟎. 𝟓𝒆−𝟖𝟎𝟎𝒕  𝐀 , 𝒕 ≥  𝟎 

        𝒗𝑪(𝒕) = −𝟐𝟓𝒆−𝟐𝟎𝟎𝒕 + 𝟏𝟎𝟎𝒆−𝟖𝟎𝟎𝒕  𝐕 , 𝒕 ≥  𝟎 
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1.9 Applications 

1) Photoflash Unit 

▪ An electronic flash exploits the ability of the capacitor to oppose any abrupt 

change in voltage.  

▪ Figure 1.36 consists essentially of a high-voltage dc supply, a current-limiting 

large resistor R1, and a capacitor C in parallel with the flashlamp of low 

resistance R2.  

 

Figure 1.36 

▪ When the switch is in position 1, the capacitor charges slowly due to the large 

time constant (𝜏 = (𝑅1𝐶)) as shown in figure 1.37 (a).  

▪ The capacitor voltage rises gradually from zero to Vs while its current 

decreases gradually from I1=Vs/R1 to zero.  

 

Figure 1.37 

▪ The charging time is approximately five times the time constant, (𝜏 = 5𝑅1𝐶), 

providing a short-duration, high current pulse.  
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▪ With the switch in position 2, the capacitor voltage is discharged. The low 

resistance R2 of the photo lamp permits a high discharge current with peak 

I2=Vs/R1 in a short duration as depicted in figure 1.37 (b), discharging takes 

place in approximately five times the time constant, (𝜏𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 5𝑅2𝐶). 

2) Relay Circuits 

▪ A relay is essentially an electromagnetic device used to open or close a switch 

that controls another circuit.  

▪ A typical relay circuit is shown in figure 1.38, the coil circuit is an RL circuit 

like that in figure 1.38 (b), where R and L are the resistance and inductance of 

the coil.  

▪ When switch S1 in figure 1.38 (a) is closed, the coil circuit is energized. The 

coil current gradually increases and produces a magnetic field. Eventually, the 

magnetic field is sufficiently strong to pull the movable contact in the other 

circuit and close switch S2.  

▪ At this point, the relay is said to be pulled in. The time interval 𝑡𝑑  between the 

closure of switches S1 and S2 is called the relay delay time.  

▪ Relays were used in the earliest digital circuits and are still used for switching 

high-power circuits. 

 

Figure 1.38 
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3) Automobile Ignition Circuit 

▪ An automobile ignition system takes advantage of the ability of inductors to 

oppose a rapid change in current makes them useful for arc or spark 

generation.  

▪ The gasoline engine of an automobile requires that the fuel-air mixture in each 

cylinder be ignited at proper times. This is achieved using a spark plug, which 

essentially consists of a pair of electrodes separated by an air gap.  

▪ An inductor (the spark coil) L is used to create a large voltage (thousands of 

volts) between the electrodes (using the 12 V car battery), a spark is formed 

across the air gap, thereby igniting the fuel.  

▪ When the ignition switch is closed, the current through the inductor increases 

gradually and reaches the final value of 𝑖 = 𝑉𝑠/𝑅 where 𝑉𝑠 = 12 𝑉.  

▪ The time taken for the inductor to charge is five times the time constant of the 

circuit 𝜏 = 𝐿/𝑅,   𝜏𝑐ℎ𝑎𝑟𝑔𝑒 = 5𝐿/𝑅  

▪ Since at steady state, 𝑖 is constant, 𝑑𝑖/𝑑𝑡 = 0, and the inductor voltage v = 0.  

▪ When the switch suddenly opens, a large voltage is developed across the 

inductor (due to the rapidly collapsing field) causing a spark or arc in the air 

gap. The spark continues until the energy stored in the inductor is dissipated 

in the spark discharge.  

▪ The system is modeled by the circuit shown in figure 1.39. The 12-V source 

is due to the battery and alternator.         

 
Figure 1.39 
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The 4 Ω resistor represents the resistance of the wiring. The ignition coil is 

modeled by the 8-mH inductor. The 1 𝜇𝐹 capacitor (known as the condenser to 

auto-mechanics) is in parallel with the switch (known as the breaking points or 

electronic ignition). 

H.W 1.9: An electronic flashgun has a current-limiting resistor 6 kΩ and 2000-

𝜇F electrolytic capacitor charged to 240 V. If the lamp resistance is 12 Ω find: 

(a) the peak charging current, (b) the time required for the capacitor to fully 

charge, (c) the peak discharging current, (d) the total energy stored in the 

capacitor, and (e) the average power dissipated by the lamp. 

Ans: (a) 40 mA, (b) 1 minute, (c) 20 A, (d) 57.6 J, and (e) 480 watts 

H.W 1.10: The coil of a certain relay is operated by a 12-V battery. If the coil 

has a resistance of 150 Ω and an inductance of 30 mH and the current needed 

to pull in is 50 mA, calculate the relay delay time. 

(Ans: td = 0.1962 ms) 

H.W 1.11: Assuming that the switch in figure 1.39 is closed prior to t = 0− find 

the inductor voltage 𝑣𝐿 for t > 0. 

Ans: 𝒗𝑳(𝒕) − 𝟐𝟔𝟖𝒆−𝟐𝟓𝟎𝒕 𝒔𝒊𝒏(𝟏𝟏, 𝟏𝟖𝟎𝒕)   𝑽 

 

 


