

2024-2025

Computer Organization

LECTURES

PREPARED BY:

LECTURER: Dr. Ahmed Mohammed Hussein

UNIVERSITY OF BABYLON 2024/ 2025

COLLEGE OF SCIENCE FOR WOMEN FIRST CLASS

COMPUTER DEPARTMENT

Lecturer: Dr. Ahmed Mohammed Hussein
1

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

❖ LEARNING OBJECTIVES

After completion of this lecture, you should be able to:

➢ Describe the data representation

➢ Describe the number systems

1.

The basic building block of personal computers is the transistor. A transistor is an electronic device

for controlling the flow of electrons in an electrical circuit. If electrons are allowed to flow, the circuit

is ON; conversely, if electrons are not allowed to flow, the circuit is OFF. Thinking of a transistorized

circuit as a switch like a light switch at a home. The switch is either on or off and stays that way until

it is flipped again. When a circuit is on, we say it is in the marking state and assign a 1 to it. Conversely,

when it is off, we assign a 0 to it.

A modern digital computer is often said to be a binary computer because its most basic circuits can

remember either one of two states: 0 and 1. The binary digits 0 and 1 are called bits.

2.

The number systems that we discuss here are based on positional number systems. The decimal

number system that we are already familiar with is an example of a positional number system. In

contrast, the Roman numeral system is not a positional number system. Every positional number

system has a base, and an alphabet. The base is a positive number. For example, the decimal system

is a base-10 system. The number of symbols in the alphabet is equal to the base of the number system.

The alphabet of the decimal system is 0 through 9, a total of 10 symbols or digits. There are four

number systems that are relevant in the context of computer systems and programming. These are the

decimal (base-10), binary (base-2), octal (base-8), and hexadecimal (base-16) number systems.

University of Babylon

Date: / / 2024

Lecturer: Dr. Ahmed M. Hussein

College of Science for Women

Subject: Computer Organization

Lecture Title: Data Representation

 Computer Department

 Stage: First Class

 Lecture No.: 4

Lecturer: Dr. Ahmed Mohammed Hussein
2

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

In a positional number system, a sequence of digits is used to represent a number. Each digit in this

sequence should be a symbol in the alphabet. There is a weight associated with each position. If we

count position numbers from right to left starting with zero, the weight of position n in a base b number

system is bn. For example, the number 579 in the decimal system is actually interpreted as

(Of course, 100=1). In other words, 9 is in unit’s place, 7 in 10’s place, and 5 in 100’s place.

2.1.

The key to understanding computers is the binary number system. The binary number system has

only two digits: 0 to 1. Just as decimal notation is based on places that represent powers of ten,

System Base Possible digits (alphabet)

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Digits Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 Computers internally use the binary system. The

remaining two number systems—octal and

hexadecimal—are used mainly for convenience to

write a binary number even though they are number

systems on their own. We would have ended up

using these number systems if we had 8 or 16

fingers instead of 10.

Note

Lecturer: Dr. Ahmed Mohammed Hussein
3

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

binary notation is based on power of two. For example, the decimal number 537 is really the sum

of powers of ten:

537= (5×102) + (3×101) + (7×100)

 = (5×100) + (3×10) + (7×1)

 = 500 + 30 + 7 = 537

Binary numbers are sums of powers of two in the same way that decimal numbers are sums of

powers of ten. The following table shows the decimal numbers represented by some of more

important powers of two in personal computing:

2-2 = 0.25 2-1 = 0.5 20 = 1 21 = 2 22 = 4

23 = 8 24 = 16 25 = 32 26 = 64 27 = 128

28 = 256 216 = 65.536 220 = 1.048.576 224 = 16.777.216

A BINARY NUMBER is a string of 1s and 0s, each indicating the presence or absence of a power

of two. For example, consider the binary number 101. This number is converted to its decimal

equivalents as follows:

Binary number 0 0 0 0 0 1 0 1

Power of two 7 6 5 4 3 2 1 0

Decimal number 0 0 0 0 0 4 0 1

 101 binary = (1×22) + (0×21) + (1×20)

 = (1×4) + (0×2) + (1×1)

 = 4 + 0 + 1 = 5 decimal

Thus, 101 is the binary number representation of the decimal number 5. In a binary number such

101.1 the fractional number part is a sum of negative powers of 2. For example, 101.1 binary is

converted to its decimal equivalent as follows:

Lecturer: Dr. Ahmed Mohammed Hussein
4

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

 101.1 binary = (1×22) + (0×21) + (1×20) + (1×2-1)

 = (1×4) + (0×2) + (1×1) + (1×(1/2))

 = 4 + 0 + 1+ 1/2 = 5.5 decimal

Keep in mind that computers work exclusively with binary numbers because they can store only

either a 1 or a 0. To do arithmetic and word processing they must convert from binary to decimal

and back again.

In the binary system, using n bits, we can represent numbers from 0 through (2n-1) for a total of 2n

different values. We need m bits to represent X different values, where

for example, 150 different values can be represented by using

In fact, using 8 bits, we can represent 28=256 different values (i.e., from 0 through 255).

2.2.

The alphabet of computers, more precisely digital computers, consists of 0 and 1. Each is called a

bit, which stands for the binary digit. The term byte is used to represent a group of 8 bits. The term

word is used to refer to a group of bytes that is processed simultaneously. The exact number of

bytes that constitute a word depends on the system. For example, in the Pentium, a word refers to

four bytes or 32 bits. We use the abbreviation “b” for bits, “B” for bytes, and “W” for words.

Sometimes we also use doubleword and quadword. A doubleword has twice the number of bits as

the word and the quadword has four times the number of bits in a word.

2-bit → 2^2 = 4 possible states (00, 01, 10, 11)

3-bit → 2^3 = 8 possible states (000, - - -, 111)

8-bit →2^8 = 256 possible states (00000000, - - - , 11111111)

Lecturer: Dr. Ahmed Mohammed Hussein
5

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

Bits in a word are usually ordered from right to left, as you would write digits in a decimal number.

The rightmost bit is called the least significant bit (LSB), and the leftmost bit is called the most

significant bit (MSB).

We use standard terms such as kilo (K), mega (M), giga (G), and so on to represent large integers.

Unfortunately, we use two different versions of each, depending on the number system, decimal or

binary. Table 1 summarizes the differences between the two systems. Typically, computer-related

attributes use the binary version. For example, when we say 128 megabyte (MB) memory, we mean

128×220 bytes. Usually, communication-related quantities and time units are expressed using the

decimal system. For example, when we say that the data transfer rate is 100 megabits/second

(Mb/s), we mean 100×106 Mb/s.

3.

Now that you are familiar with different number systems, let us turn our attention to how integers

(numbers with no fractional part) are represented internally in computers. Of course, we know that

the binary number system is used internally. Still, there are a number of other details that need to be

sorted out before we have a workable internal number representation scheme.

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equivalent binary

representation. A binary number with n bits can represent 2n different values, and the range of the

Table 1 Terms to represent large integer values

Lecturer: Dr. Ahmed Mohammed Hussein
6

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

numbers is from 0 to 2n-1. Padding of 0s on the left can be used to make the binary conversion of a

decimal number equal exactly N bits. For example, to represent 16D we need [log2 16] = 5 bits.

Therefore, 16D = 10000B. However, this can be extended to a byte (i.e., N=8) as

00010000B

A problem arises if the number of bits required to represent an integer in binary is more than the N

bits we have. Clearly, such numbers are outside the range of numbers that can be represented using N

bits. Recall that using N bits, we can represent any integer X such that

4.

One common way of handling negative numbers is to add one bit to the binary code of the number

called sign bit. This is the frequently the most left bit, with a 0 indicating a positive number and a 1 a

negative number.

There are three widely used techniques for representing both positive and negative numbers:-

1. Sign and magnitude.

2. 1’s complement.

3. 2’s complement.

In sign and magnitude method the first bit from the left used for a sign and the remaining for the

magnitude of the number. For example, the numbers between -127 and +127 could be represented

in 8 bits , the first being used for a sign and the remaining 7 for the magnitude.

For example, the negative number (-18) is represented using 6 bits, base 2 in the sign-magnitude

format, as follows (110010), while a (+18) is represented as (010010). Although simple, the sign-

magnitude representation is complicated when performing arithmetic operations. In particular, the

sign bit has to be dealt with separately from the magnitude bits. Consider, for example, the addition

of the two numbers +18 (010010) and -19 (110011) using the sign-magnitude representation. Since

the two numbers carry different signs, then the result should carry the sign of the larger number in

0 ≤ X ≤ 2n-1.

Lecturer: Dr. Ahmed Mohammed Hussein
7

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

magnitude, in this case the (-19). The remaining 5-bit numbers are subtracted (10011-10010) to

produce (00001), that is, (-1).

The positive values have the same representation systems, while variation

occurs in the representation of negative values.

In the 1’s complement representation system, negative values are obtained by complementing each

bit of the representation of the corresponding positive value.

According to the 2’s complement system, a positive number is represented the same way as in the

sign-magnitude. However, a negative number is obtained by adding 1 to the 1’ complement of value.

Consider, for example, the representation of the number (-19) using 2’s complement. In this case, the

number 19 is first represented as (010011). Then each digit is complemented, hence the number will

be (101100). Finally a “1” is added at the least significant bit position to result in (101101). Now,

consider the 2’s complement representation of the number (+18). Since the number is positive, then it

is represented as (010010), the same as in the sign-magnitude case. Now, consider the addition of

these two numbers. In this case, we add the corresponding bits without giving special treatment to the

sign bit. The results of adding the two numbers produces (111111). This is the 2’s complement

representation of a (-1), as expected. The main advantage of the 2’s complement representation is that

no special treatment is needed for the sign of the numbers. Another characteristic of the 2’s

complement is the fact that a carry coming out of the most significant bit while performing arithmetic

operations is ignored without affecting the correctness of the result. Consider, for example, adding -

19 (101101) and +26 (011010). The result will be (1)(000111), which is correct (+7) if the carry bit is

ignored.

EX: Represent the number +9 using the three methods

+9 0,1001 signed – magnitude

 0,1001 1`s complement

 0,1001 2`s complement

Note

Lecturer: Dr. Ahmed Mohammed Hussein
8

C
o

m
p

u
te

r
O

rg
a

n
iz

a
ti

o
n

2

0
2

4
-2

0
2

5

1. What is the basic building block of personal computers?

2. List various number systems with examples.

3. Define the binary number system.

EX: what is the 1`s complement, 2`s complement and signed – magnitude of -9.

-9 1,1001 signed – magnitude

 1,0110 1`s complement

 1,0111 2`s complement

Note:- Special case in 2’s complement representation is be that whenever a signed number has a 1 in

the sign bit and a 0 for all the magnitude bits, its decimal equivalent is (-2N-1) where N is the total

number of bits including sign bit. For example:

 1,0000 -25-1 = -24 = -16

The advantage of the sign 2’s complement representation over the 1’s complement and

sign/magnitude is that it contains only one type of zero while the other representations have both a

+0 and -0. And the other is that addition of 2’ complement numbers can be performed without

regard for the sign.

