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❖ LEARNING OBJECTIVES 

After completion of this lecture, you should be able to:  

➢ Describe the data representation 

➢ Describe the number systems 

 

1. 

The basic building block of personal computers is the transistor. A transistor is an electronic device 

for controlling the flow of electrons in an electrical circuit. If electrons are allowed to flow, the circuit 

is ON; conversely, if electrons are not allowed to flow, the circuit is OFF. Thinking of a transistorized 

circuit as a switch like a light switch at a home. The switch is either on or off and stays that way until 

it is flipped again. When a circuit is on, we say it is in the marking state and assign a 1 to it. Conversely, 

when it is off, we assign a 0 to it. 

A modern digital computer is often said to be a binary computer because its most basic circuits can 

remember either one of two states: 0 and 1. The binary digits 0 and 1 are called bits. 

2. 

The number systems that we discuss here are based on positional number systems. The decimal 

number system that we are already familiar with is an example of a positional number system. In 

contrast, the Roman numeral system is not a positional number system. Every positional number 

system has a base, and an alphabet. The base is a positive number. For example, the decimal system 

is a base-10 system. The number of symbols in the alphabet is equal to the base of the number system. 

The alphabet of the decimal system is 0 through 9, a total of 10 symbols or digits. There are four 

number systems that are relevant in the context of computer systems and programming. These are the 

decimal (base-10), binary (base-2), octal (base-8), and hexadecimal (base-16) number systems. 
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In a positional number system, a sequence of digits is used to represent a number. Each digit in this 

sequence should be a symbol in the alphabet. There is a weight associated with each position. If we 

count position numbers from right to left starting with zero, the weight of position n in a base b number 

system is bn. For example, the number 579 in the decimal system is actually interpreted as 

 

(Of course, 100=1). In other words, 9 is in unit’s place, 7 in 10’s place, and 5 in 100’s place. 

 

2.1. 

The key to understanding computers is the binary number system. The binary number system has 

only two digits: 0 to 1. Just as decimal notation is based on places that represent powers of ten, 

System Base Possible digits (alphabet) 

Binary  2 0 1 

Octal 8 0 1 2 3 4 5 6 7  

Decimal 10 0 1 2 3 4 5 6 7 8 9 

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Digits Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

 Computers internally use the binary system. The 

remaining two number systems—octal and 

hexadecimal—are used mainly for convenience to 

write a binary number even though they are number 

systems on their own. We would have ended up 

using these number systems if we had 8 or 16 

fingers instead of 10. 

Note 
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binary notation is based on power of two. For example, the decimal number 537 is really the sum 

of powers of ten: 

537= (5×102) + (3×101) + (7×100) 

      = (5×100) + (3×10) + (7×1) 

      = 500 + 30 + 7 = 537 

Binary numbers are sums of powers of two in the same way that decimal numbers are sums of 

powers of ten. The following table shows the decimal numbers represented by some of more 

important powers of two in personal computing: 

2-2 = 0.25 2-1 = 0.5 20 = 1 21 = 2 22 = 4 

23 = 8 24 = 16 25 = 32 26 = 64 27 = 128  

28 = 256 216 = 65.536 220 = 1.048.576 224 = 16.777.216   

 

A BINARY NUMBER is a string of 1s and 0s, each indicating the presence or absence of a power 

of two. For example, consider the binary number 101. This number is converted to its decimal 

equivalents as follows: 

Binary number      0  0  0  0  0  1  0  1 

Power of two        7  6  5  4  3  2  1  0 

Decimal number   0  0  0  0  0  4  0  1 

        101 binary = (1×22) + (0×21) + (1×20) 

                    = (1×4) + (0×2) + (1×1) 

                    = 4 + 0 + 1 = 5 decimal           

Thus, 101 is the binary number representation of the decimal number 5. In a binary number such 

101.1 the fractional number part is a sum of negative powers of 2. For example, 101.1 binary is 

converted to its decimal equivalent as follows: 
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          101.1 binary = (1×22) + (0×21) + (1×20) + (1×2-1) 

                             = (1×4) + (0×2) + (1×1) + (1×(1/2)) 

                     = 4 + 0 + 1+ 1/2 = 5.5 decimal        

Keep in mind that computers work exclusively with binary numbers because they can store only 

either a 1 or a 0. To do arithmetic and word processing they must convert from binary to decimal 

and back again. 

In the binary system, using n bits, we can represent numbers from 0 through (2n-1) for a total of 2n 

different values. We need m bits to represent X different values, where 

                     

for example, 150 different values can be represented by using   

 

In fact, using 8 bits, we can represent 28=256 different values (i.e., from 0 through 255). 

 

2.2. 

The alphabet of computers, more precisely digital computers, consists of 0 and 1. Each is called a 

bit, which stands for the binary digit. The term byte is used to represent a group of 8 bits. The term 

word is used to refer to a group of bytes that is processed simultaneously. The exact number of 

bytes that constitute a word depends on the system. For example, in the Pentium, a word refers to 

four bytes or 32 bits. We use the abbreviation “b” for bits, “B” for bytes, and “W” for words. 

Sometimes we also use doubleword and quadword. A doubleword has twice the number of bits as 

the word and the quadword has four times the number of bits in a word. 

2-bit → 2^2 = 4  possible states  (00, 01, 10, 11) 

3-bit → 2^3 = 8  possible states  (000, - - -, 111) 

8-bit →2^8 = 256 possible states  (00000000, - - - , 11111111) 
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Bits in a word are usually ordered from right to left, as you would write digits in a decimal number. 

The rightmost bit is called the least significant bit (LSB), and the leftmost bit is called the most 

significant bit (MSB). 

We use standard terms such as kilo (K), mega (M), giga (G), and so on to represent large integers. 

Unfortunately, we use two different versions of each, depending on the number system, decimal or 

binary. Table 1 summarizes the differences between the two systems. Typically, computer-related 

attributes use the binary version. For example, when we say 128 megabyte (MB) memory, we mean 

128×220 bytes. Usually, communication-related quantities and time units are expressed using the 

decimal system. For example, when we say that the data transfer rate is 100 megabits/second 

(Mb/s), we mean 100×106 Mb/s. 

 

 

 

 

 

 

 

 

 

 

 

3. 

Now that you are familiar with different number systems, let us turn our attention to how integers 

(numbers with no fractional part) are represented internally in computers. Of course, we know that 

the binary number system is used internally. Still, there are a number of other details that need to be 

sorted out before we have a workable internal number representation scheme. 

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equivalent binary 

representation. A binary number with n bits can represent 2n different values, and the range of the 

 

Table 1 Terms to represent large integer values 
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numbers is from 0 to 2n-1. Padding of 0s on the left can be used to make the binary conversion of a 

decimal number equal exactly N  bits. For example, to represent 16D we need [log2 16] = 5 bits. 

Therefore, 16D = 10000B. However, this can be extended to a byte (i.e., N=8) as 

00010000B 

A problem arises if the number of bits required to represent an integer in binary is more than the N 

bits we have. Clearly, such numbers are outside the range of numbers that can be represented using N 

bits. Recall that using N bits, we can represent any integer X such that 

 

 

 

4. 

One common way of handling negative numbers is to add one bit to the binary code of the number 

called sign bit. This is the frequently the most left bit, with a 0 indicating a positive number and a 1 a 

negative number. 

There are three widely used techniques for representing both positive and negative numbers:- 

1. Sign and magnitude. 

2. 1’s complement. 

3. 2’s complement. 

 

In sign and magnitude method the first bit from the left used for a sign and the remaining for the 

magnitude of the number. For example, the numbers between  -127 and  +127 could be represented 

in 8 bits , the first being used for a sign and the remaining 7 for the magnitude. 

For example, the negative number (-18) is represented using 6 bits, base 2 in the sign-magnitude 

format, as follows (110010), while a (+18) is represented as (010010). Although simple, the sign-

magnitude representation is complicated when performing arithmetic operations. In particular, the 

sign bit has to be dealt with separately from the magnitude bits. Consider, for example, the addition 

of the two numbers +18 (010010) and -19 (110011) using the sign-magnitude representation. Since 

the two numbers carry different signs, then the result should carry the sign of the larger number in 

0 ≤ X ≤ 2n-1. 
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magnitude, in this case the (-19). The remaining 5-bit numbers are subtracted (10011-10010) to 

produce (00001), that is, (-1).  

 

The positive values have the same representation systems, while variation 

occurs in the representation of negative values. 

 

In the 1’s complement representation system, negative values are obtained by complementing each 

bit of the representation of the corresponding positive value. 

According to the 2’s complement system, a positive number is represented the same way as in the 

sign-magnitude. However, a negative number is obtained by adding 1 to the 1’ complement of value. 

Consider, for example, the representation of the number (-19) using 2’s complement. In this case, the 

number 19 is first represented as (010011). Then each digit is complemented, hence the number will 

be (101100). Finally a “1” is added at the least significant bit position to result in (101101). Now, 

consider the 2’s complement representation of the number (+18). Since the number is positive, then it 

is represented as (010010), the same as in the sign-magnitude case. Now, consider the addition of 

these two numbers. In this case, we add the corresponding bits without giving special treatment to the 

sign bit. The results of adding the two numbers produces (111111). This is the 2’s complement 

representation of a (-1), as expected. The main advantage of the 2’s complement representation is that 

no special treatment is needed for the sign of the numbers. Another characteristic of the 2’s 

complement is the fact that a carry coming out of the most significant bit while performing arithmetic 

operations is ignored without affecting the correctness of the result. Consider, for example, adding -

19 (101101) and +26 (011010). The result will be (1)(000111), which is correct (+7) if the carry bit is 

ignored. 

EX: Represent the number +9 using the three methods 

+9   0,1001  signed – magnitude 

  0,1001  1`s complement 

  0,1001  2`s complement 

 

Note 



 

Lecturer: Dr. Ahmed Mohammed Hussein 
8 

C
o

m
p

u
te

r 
O

rg
a

n
iz

a
ti

o
n

  
2

0
2

4
-2

0
2

5
 

 

1.  What is the basic building block of personal computers? 

2.  List various number systems with examples. 

3.  Define the binary number system. 

 

EX: what is the 1`s complement, 2`s complement and signed – magnitude of -9. 

-9  1,1001  signed – magnitude 

  1,0110  1`s complement 

  1,0111  2`s complement 

 

Note:- Special case in 2’s complement representation is be that whenever a signed number has a 1 in 

the sign bit and a 0 for all the magnitude bits, its decimal equivalent is ( -2N-1 ) where N is the total 

number of bits including sign bit. For example: 

      1,0000                     -25-1 = -24 = -16 

The advantage of the sign 2’s complement representation over the 1’s complement and 

sign/magnitude is that it contains only one type of zero while the other representations have both a 

+0 and -0. And the other is that addition of 2’ complement numbers can be performed without 

regard for the sign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


