
Computer Architecture
Second year

Dr. Salah Al-Obaidi

Lecture #5: Types of Operands Spring 2025

Contents

Contents i

4.4 x86 Addressing Modes . 45

5 Types of Operands 49

i

4.4. x86 Addressing Modes

4.4 x86 Addressing Modes

The x86 is equipped with a variety of addressing modes intended to allow

the efficient execution of high- level languages. Figure 4.1 indicates the logic

involved.

Figure 4.1: x86 Addressing Mode Calculation.

Table 4.1 lists the x86 addressing modes. Let us consider each of these in

turn.

For the immediate mode, the operand is included in the instruction. The

operand can be a byte, word, or doubleword of data.

For register operand mode, the operand is located in a register. For general

instructions, such as data transfer, arithmetic, and logical instructions, the

operand can be one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI,

45

Contents

Table 4.1: x86 Addressing Modes.

Mode Algorithm
Immediate Operand = A
Register Operand LA = R
Displacement LA = (SR) + A
Base LA = (SR) + (B)
Base with Displacement LA = (SR) + (B) + A
Scaled Index with Displacement LA = (SR) + (I) * S + A
Base with Index and Displacement LA = (SR) + (B) + (I) + A
Base with Scaled Index and Displacement LA = (SR) + (I) * S + (B) + A
Relative LA = (PC) + A
LA = linear address R = register
(X) = contents of X B = base register
SR = segment register I = index register
PC = program counter S = scaling factor
A = contents of an address field in the instruction

EDI, ESP, EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP,

BP), or one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL).

There are also some instructions that reference the segment selector registers

(CS, DS, ES, SS, FS, GS).

The remaining addressing modes reference locations in memory. The memory

location must be specified in terms of the segment containing the location and

the offset from the beginning of the segment. In some cases, a segment is

specified explicitly; in others, the segment is specified by simple rules that

assign a segment by default.

In the displacement mode, the operand’s offset (the effective address of

Figure 4.1) is contained as part of the instruction as an 8-, 16-, or 32-bit

displacement. With segmentation, all addresses in instructions refer merely

to an offset in a segment. The displacement addressing mode is found on few

machines because it leads to long instructions. In the case of the x86, the

displacement value can be as long as 32 bits, making for a 6-byte instruction.

Displacement addressing can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address

portion of the instruction tells the processor where to look to find the address.

46

4.4. x86 Addressing Modes

The base mode specifies that one of the 8-, 16-, or 32-bit registers contains

the effective address.This is equivalent to what we have referred to as register

indirect addressing.

In the base with displacement mode, the instruction includes a displace-

ment to be added to a base register, which may be any of the general-purpose

registers. Examples of uses of this mode are as follows:

• Used by a compiler to point to the start of a local variable area.

• Used to index into an array when the element size is not 1, 2, 4, or 8 bytes

and which therefore cannot be indexed using an index register.

• Used to access a field of a record.

In the scaled index with displacement mode, the instruction includes a

displacement to be added to a register, in this case called an index register. The

index register may be any of the general-purpose registers except the one called

ESP, which is generally used for stack processing. In calculating the effective

address, the contents of the index register are multiplied by a scaling factor of

1, 2, 4, or 8, and then added to a displacement.This mode is very convenient

for indexing arrays.

The base with index and displacement mode sums the contents of the base

register, the index register, and a displacement to form the effective address.

Again, the base register can be any general-purpose register and the index

register can be any general-purpose register except ESP. As an example, this

addressing mode could be used for accessing a local array on a stack frame.

This mode can also be used to support a two-dimensional array.

The based scaled index with displacement mode sums the contents of the

index register multiplied by a scaling factor, the contents of the base register,

and the displacement. This is useful if an array is stored in a stack frame; in

this case, the array elements would be 2, 4, or 8 bytes each in length. This

47

Contents

mode also provides efficient indexing of a two-dimensional array when the array

elements are 2, 4, or 8 bytes in length.

Finally, relative addressing can be used in transfer-of-control instructions.

A displacement is added to the value of the program counter, which points to

the next instruction. In this case, the displacement is treated as a signed byte,

word, or doubleword value, and that value either increases or decreases the

address in the program counter

48

5. Types of Operands

Machine instructions operate on data. The most important general categories

of data are

• Addresses

• Numbers

• Characters

• Logical data

The addresses are, in fact, a form of data. In many cases, some calculation

must be performed on the operand reference in an instruction to determine the

main or virtual memory address. In this context, addresses can be considered

to be unsigned integers.

Other common data types are numbers, characters, and logical data, and

each of these is briefly examined in this section. Beyond that, some machines

define specialized data types or data structures. For example, there may be

machine operations that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data

processing, there is a need for numbers to act as counters, field widths, and so

forth.

Three types of numerical data are common in computers:

49

5. Types of Operands

• Binary integer or binary fixed point.

• Binary floating point.

• Decimal.

Although all internal computer operations are binary in nature, the human

users of the system deal with decimal numbers. Thus, there is a necessity to

convert from decimal to binary on input and from binary to decimal on output.

For applications in which there is a great deal of I/O and comparatively little,

comparatively simple computation, it is preferable to store and operate on the

numbers in decimal form. The most common representation for this purpose is

packed decimal.

With packed decimal, each decimal digit is represented by a 4-bit code, in

the obvious way, with two digits stored per byte. Thus, and Note that this is

a rather inefficient code because only 10 of 16 possible 4-bit values are used.

To form numbers, 4-bit codes are strung together, usually in multiples of 8

bits. Thus, the code for 246 is 0000 0010 0100 0110. This code is clearly less

compact than a straight binary representation, but it avoids the conversion

overhead. Negative numbers can be represented by including a 4-bit sign digit

at either the left or right end of a string of packed decimal digits. Standard sign

values are 1100 for positive and 1101 for negative.

Many machines provide arithmetic instructions for performing operations

directly on packed decimal numbers.

Characters

A common form of data is text or character strings. While textual data are most

convenient for human beings, they cannot, in character form, be easily stored

or transmitted by data processing and communications systems. Such systems

are designed for binary data. Thus, a number of codes have been devised by

which characters are represented by a sequence of bits. Perhaps the earliest

common example of this is the Morse code. Today, the most commonly used

50

character code in the International Reference Alphabet (IRA), referred to in

the United States as the American Standard Code for Information Interchange

(ASCII). Each character in this code is represented by a unique 7-bit pattern;

thus, 128 different characters can be represented. This is a larger number

than is necessary to represent printable characters, and some of the patterns

represent control characters. Some of these control characters have to do with

controlling the printing of characters on a page. Others are concerned with

communications procedures. IRA-encoded characters are almost always stored

and transmitted using 8 bits per character. The eighth bit may be set to 0 or

used as a parity bit for error detection. In the latter case, the bit is set such

that the total number of binary 1s in each octet is always odd (odd parity) or

always even (even parity).

Another code used to encode characters is the Extended Binary Coded

Decimal Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. It

is an 8-bit code. As with IRA, EBCDIC is compatible with packed decimal. In

the case of EBCDIC, the codes 11110000 through 11111001 represent the

digits 0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is

treated as a single unit of data. It is sometimes useful, however, to consider an

n-bit unit as consisting of n 1-bit items of data, each item having the value 0 or

1. When data are viewed this way, they are considered to be logical data.

There are two advantages to the bit-oriented view:

• First, we may sometimes wish to store an array of Boolean or binary data

items, in which each item can take on only the values 1 (true) and 0

(false).With logical data, memory can be used most efficiently for this

storage.

• Second, there are occasions when we wish to manipulate the bits of a data

51

5. Types of Operands

item. For example, if floating-point operations are implemented in software,

we need to be able to shift significant bits in some operations. Another

example: To convert from IRA to packed decimal, we need to extract the

rightmost 4 bits of each byte.

52

	Contents
	x86 Addressing Modes

	Types of Operands

