Inorganic Chemistry Second year 1st semester Lecture 1 ### syllabus - 1-Review on classification of periodic table - Deviation of some d- and f- transition metals from n+1 rule - -Coordination number of elements, Sigma and pi bonding - -comparison, of f-elements with d-elements, Lanthanide contraction - Uniqueness properties of 1st and 2nd period elements Diagonal effect - 2- Oxidation state and oxidation no. of representative elements, d-block and f-block elements - 3- Oxides of representative and transition metal elements - 4-Colors and spectra of transition metal complexes, factors affecting absorption energy - 5-Magnetism, temperature effect, magnetic moments, ESR #### 6- Electrode potential - -(review on cell potential, Nernst equation, relationship of E°cell to Δ G° and K) - -Born-Harbor cycle of ΔGo - -oxidation reduction in aq. Solutions as a function of pH, - -Latimer diagram #### 7- Symmetry - -Symmetry operations and Symmetry elements - -point group symbols from molecular shapes, #### 8- Solid State Chemistry - -(lattice points) - -Weiss and Miller indices - X- ray diffraction and Bragg's law examples Structures of unit cells of some inorganic compounds #### REFERENCES - 1- G.E.Rodgers, Descriptive inorganic chemistry, coordination and solid state,2nd Ed, Brooks/ Cole, Thomson, (2002) - 2- G.L.Miessler and D.A.Tarr, Inorganic chemistry. 2nd Ed, Prentice Hall - 3- F.A.Cotton and G.Wilkinson Basic inorganic chemistry.3rd Ed,Wiley New york, (1995) - 4- Whitten, Davis, Peck, Stanely, General chemistry, 7th Ed., Brooks/Cole, Thomson, (2003) - 5- J.E.Huheey, E.A.keiter, R.L.Keiter, Inorganic Chemistry, 4th Ed. Harper New York, (1993) , Collins, - 6- Shriver & Atkins, Inorganic chemistry, 4th Ed, Peter Atkins, Tina Overton, Oxford, University Press, (2006) - 7- C.E.Housecroft and A.G.Sharpe, Inorganic chemistry, 3rd Ed., Prentice Hall, (2008) - 8 N.N.Greenwood and A.Earnshaw, Chemistry of elements, (1999) # To build up an atomic structure we should follow the rules: 1- Pauli principal: No two electrons in the same orbital can have the same four quantum no.s only electrons with opposite spin can occupy the same orbital. 2- Hund's rule: Electrons fill degenerate orbitals one at a time before doubling up in the same orbital" The p,d,f,g orbitals sets are equivalent in energy but differ in orientation in space $\mathbf{ml}=(2l+1)$ p(3), d(5),f(7), g(9). So they should be half filled before any are filled to avoid electron-electron repulsion as repulsion means high energy ### 3- Aufbau Principle states that: "The orbitals of lower energy are filled first with the electrons then the orbitals of high energy are filled." The orbital energy does not depend on value of n only but also on ℓ , using $(n + \ell)$ rule, the lower energy orbital is that of lower value of $(n + \ell)$. If $(n + \ell)$ values of different orbitals are equal the one with the lowest value of n fill first ### The $(n + \ell)$ rule of orbital energies in a multielectron atom Electrons fill orbitals of different energies by filling the lowest energy first. The energies of orbitals of multielectron atoms follow the $(n + \ell)$ rule: the lowest value of $(n + \ell)$ has the lowest energy. Examples with $(n + \ell)$ • 1s (1 + 0) < 2s (2 + 0) < 3s (3 + 0) < 3p (3+1), < 4s (4 + 0) < 3d (3 + 2) < 4p (4 + 1) When $n + \ell$ is the same for two orbitals, the orbital with the higher value of n has the higher energy. ### **Diagonal Rule** ### American Classification ## European Classification ### IUPAC Classification ### Classification of periodic table according to groups(families)(1-18)(IUPAC): 1- Main or representative groups a- s-Block (1,2) alkali metals(IA) ₃Li- ₈₇Fr ns¹ GI alkali earth metals(IIA) ns² GII ₄Be-₈₈Ra b- p- Block(13) boron group or family ns² np¹ ₅B- ₈₁TI GIII carbon group(14) or family ns² np² **GIV** ₆C-₈₂Pb 15 nitrogen group or family(pnictogens) ₇N-₈₃Bi $ns^2 np^3$ GV ns² np⁴ GVI 16 oxygen family(Chalcogens) ₈O-₈₄Po ns² np⁵ GVII 17 Halogens ₉F- ₈₅At ns² np⁶ 18 noble gases $_{2}$ He $-[_{10}$ Ne- $_{86}$ Rn] **GVIII** ²⁻ Main Transition metals d-Bolck (3-12) 3d 1st transition series, 4d (2nd transition series, 5d (3rd transition series)..... 3-Inner transition metals(rare earth metals) –f-Block 4f(lanthanides) 5f(Actinides) ### Classification according to periods(1-7)(n) - n=1 (2e) 2 elements H He $1s^{1-2}$ n=2 (8e) 8 elements Li Be B C N O F Ne [He] $2s^{1-2}$ 2p $^{1-6}$ n=3 (8) elements Na Mg Al Si P S Cl Ar [Ne] $3s^{1-2}$ 3p $^{1-6}$ - n=4 (18) [Ar] $3d^{1-10} (n+l=5) 4s^{1-2} (n+l=4)4p^{1-6} (n+l=5)$ n=4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr - n=5 (18) [Kr] $4d^{1-10}(n+l=6) 5s^{1-2}(n+l=5) 5p^{1-6} (n+l=6)$ Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Pt Ag Cd In Sn Sb Te I Xe - n=6 (32) [Xe] $4f^{1-14}$ (n+l=7 lanthanoids) $5d^{1-10}$ (n+l=7) $6s^{1-2}$ (n+l=6) $6p^{1-6}$ $_{55}$ Cs $_{56}$ Ba $_{57}$ La (lanthanoids $_{58}$ Ce- $_{71}$ Lu) $_{72}$ Hf $_{73}$ Ta $_{74}$ W $_{75}$ Re $_{76}$ Os $_{77}$ Ir $_{78}$ Pt $_{79}$ Au $_{80}$ Hg $_{81}$ Tl $_{82}$ Pb $_{83}$ Bi $_{84}$ Po $_{85}$ At $_{86}$ Rn - n=7 (32) [Rn] $5f^{1-14}(n+l=8 \text{ actinoids}) 6d^{1-10}(n+l=8) 7s^{1-2}(n+l=7) 6d^{1-10} \rightarrow 7p^{1-6}$ $_{87}Fr$ $_{88}Ra$ $_{89}Ac(Actinoids$ $_{90}Th$ $-_{103}Lr(w)) \rightarrow 4^{th}$ transition series # Periodic Table: The three broad Classes Main, Transition, Rare Earth | r(m | nain į | entative
group) | | Mai | n (Re | epres | entati | ve) 7 | Γrans | ition : | metal | S | • | 1 | 100 mm 10 | entative
group) | | | |-----|--------------------------|---------------------|---------------------|--|---------------------|---------------------|---------------------------|---------------------|---------------------|---------------------|---------------------|----------------------------|---------------------------|---------------------------|--|----------------------------|---------------------------|---------------------| | 1 8 | elements
IA | | | Main (Representative), Transition metals, lanthanides and actinides (rare earth) | | | | | | | | | | | elements
VIIIA | | | | | | 1
H
0079 | IIA | | | | | | | | | | | ША | IVA | VA | VIA | VIIA | He
4.003 | | 1 | 3
Li
.941 | 4
Be
9.012 | | Periodic Table of the Elements Transition metals | | | | | | | 5
B
10.811 | 6
C
12.011 | | 8
O
15.999 | 9
F
18.998 | 10
Ne
20.180 | | | | N | 11
Va
2.990 | 12
Mg
24,305 | шв | IVB | VB | VIB | VIIB | n metals | VIIIB | - 19 | IB | IIB | 13
Al
26.982 | 14
Si
28.086 | 15
P
30,974 | 16
S
32,066 | 17
Cl
35,453 | 18
Ar
39.948 | | 3 | 19
K
9.098 | 20
Ca
40.078 | 21
Sc
44.956 | 22
Ti
47.88 | 23
V
50.942 | 24
Cr
51.996 | 25
Mn
54.938 | 26
Fe
55.845 | 27
Co
58.933 | 28
Ni
58.69 | 29
Cu
63.546 | 30
Zn
65,39 | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.922 | 34
Se
78.96 | 35
Br
79.904 | 36
Kr
83.8 | | F | 37
Rb
5.468 | 38
Sr
67.62 | 39
Y
88.906 | 40
Zr
91.224 | 41
Nb
92,906 | 42
Mo
95.94 | 43
Tc
98 | 44
Ru
101.07 | 45
Rh
102.906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112.411 | 49
In
114.82 | 50
Sn
118.71 | 51
Sb
121.76 | 52
Te
127.60 | 53
I
126,905 | 54
Xe
131.29 | | (| 55
Cs
2.905 | 56
Ba
137,327 | 57
La
138,906 | 72
Hf
178.49 | 73
Ta
180,948 | 74
W
183.84 | 75
Re
186,207 | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196,967 | BD
Hg
200,59 | 81
T1
204.383 | 82
Pb
207.2 | 83
Bi
208.980 | 84
Po
209 | 85
At
210 | 86
Rn
222 | | 1 | 87
Fr
223 | 88
Ra
226.025 | 89
Ac
227.028 | 104
Rf
261 | 105
Db
262 | 106
Sg
263 | 107
Bh
262 | 108
Hs
265 | 109
Mt
266 | 110
Uun
269 | 111
Uuu
272 | 112
Uub
277 | | 114 | | 116 | | 118 | | | | | | | | 100000 | 4,000 | | 1000 | Ra | re eartl | ı eleme | nts — | | • | - | | | | | Lanthanides
Actinides | | | | 58
Ce
140.115 | 59
Pr
140.908 | 60
Nd
144.24 | 61
Pm
145 | 62
Sm
150.36 | 63
Eu
151.964 | 64
Gd
157.25 | 65
Tb
158.925 | 66
Dy
162.5 | 67
Ho
164.93 | 68
Er
167.26 | 69
Tm
168.934 | 70
Yb
173.04 | 71
Lu
174.967 | | | | | | | 90
Th
232.038 | 91
Pa
231.036 | 92
U
238.029 | 93
Np
237.048 | 94
Pu
244 | 95
Am
243 | 96
Cm
247 | 97
Bk
247 | 98
Cf
251 | 99
Es
252 | 100
Fm
257 | 101
Md
258 | 102
No
259 | 103
Lr
262 | ### Valence Electrons Every element has both core electrons and valence electrons, e.g. Magnesium: Mg Z=12 → 12 electrons: - Core electrons are electrons in fully filled shells - Valence electrons are electrons in the outermost shell that is not fully filled with the exception of the **noble gases** that all have fully filled shells **He**: $1s^2$, **Ne**: {He} $2s^2 2p^6$, **Ar**: {Ne} $3s^2 3p^6$, **Kr**: {Ar} $4s^2 3d^{10} 4p^6$, **Xe**: $\{Kr\}\ 5s^2\ 4d^{10}\ 5p^6$. **Rn**: $\{Xe\}\ 6s^2\ 4f^{14}\ 5d^{10}\ 6p^6$. core electrons # S- block elements LA and LLA ## **Group 1** - elements with only <u>one valence electron</u>: These are called the <u>Alkali-Metal Group</u> ### **Electronic configuration** | ³ Lithium | Li | {He} <u>2</u> s1 | |-------------------------|----|------------------| | ¹¹ Sodium | Na | {Ne} <u>3</u> s1 | | ¹⁹ Potassium | K | {Ar} <u>4</u> s1 | | ³⁷ Rubidium | Rb | {Kr} <u>5</u> s1 | | 55Cesium | Cs | {Xe} <u>6</u> s1 | | 87 Francium | Fr | {Rn} <u>7</u> s¹ | Physical Properties metals i.e good conductors, soft, low melting point and boiling point # S- block elements IA and IIA **Group 2** - The Alkaline Earth Metals(IIA) electron configuration | beryllium | Be | Z= 4 | [He] 2s ² | |-----------|----|------|----------------------| | magnesium | Mg | 12 | [Ne] 3s ² | | calcium | Ca | 20 | [Ar] 4s ² | | strontium | Sr | 38 | [Kr] 5s ² | | barium | Ba | 56 | [Xe] 6s ² | | radium | Ra | 88 | [Rn] 7s ² | The last element, radium, is radioactive and will not be considered here. ### Deviation from (n+1) rule In some main transition elements and inner transition elements some deviation from (n + l) rule is observed The interaction between the two Cr and Cu in 1st tr. Series electrons in 4S orbital is of high energy (paring energy) this effect places an extra electron to 3d level and remove from 4s causing 24Cr [Ar] 3d⁵ 4s¹(half-filled orbitals) 29Cu [Ar] 3d¹⁰ 4s¹(half-filled s-orbitals and full d-orbitals) The difference in energy between an orbital of 2e and 1e can be explained as the pairing energy is higher than energy gap between ns & (n-1)d as the value of Z^* increase the energy of shells decreases ### Controlling factors on limitation of Aufbau principle 1-Stability with half filled & completely filled 2-The energies of neighboring subshells e.g. (4s, 3d), (5s, 4d), (4f, 5d), (5f, 6d) etc are quite close together (low energy gap) 3- Electron-electron repulsion (high pairing energy) ### Main transition elements (d-block) - •Main transition elements (d-block) take their collective name from their role as a bridge between the chemically active metals of gr. IA & IIA and much less active metals of gr. 12(Zn family), 13(Boron family), 14(Carbon family). - •As s-block elements are metallic in nature and p-block elements are non-metallic, hence d-block elements show a transition from metallic to non-metallic nature. In other words, they show a transition from most electropositive s-block elements to least electropositive or most electronegative p-block elements. - •The elements $_{30}$ Zn , $_{48}$ Cd , $_{80}$ Hg (gr. 12) have unique properties , while they resemble the alkaline earth metals IIA in giving oxidation state of (+2) , they differ from IIA of having higher Z* and more polarizing effect # **1st transition element series**: A part of (Period 4) [Ar] 3d¹⁻¹⁰ 4s¹⁻² This is also called as 3d series Sc $$(Z=21)$$ [Ar] $3d^1 4s^2$ Ti $(Z=22)$ [Ar] $3d^2 4s^2$ V $(Z=23)$ [Ar] $3d^3 4s^2$ Cr $(Z=24$ *[Ar] $3d^5 4s^1$ Mn $(Z=25)$ [Ar] $3d^5 4s^2$ Fe $(Z=26)$ [Ar] $3d^6 4s^2$ Co $(Z=27)$ [Ar] $3d^7 4s^2$ Ni $(Z=28)$ [Ar] $3d^8 4s^2$ Cu $(Z=29)$ *[Ar] $3d^{10} 4s^1$ Zn $(Z=30)$ [Ar] $3d^{10} 4s^2$ (non Tr.) * Deviate from(n+l) ^{7 4} # Second transition series: A part of (period 5): [Kr] 4d¹⁻¹⁰ 5s ¹⁻² This is also called as 4d series | Element | Atomic Number | Symbol | Electronic configuration | |-------------------|----------------------|--------|--| | Yttrium | 39 | Y | [Kr] 4d¹ 5s² | | Zirconium | 40 | Zr | [Kr] 4d ² 5s ² | | Niobium | 41 | Nb | *[Kr] 4d ⁴ 5s ¹ | | Molybdenum | 42 | Мо | *[Kr] 4d ⁵ 5s ¹ | | Technetium | 43 | Tc | ?[Kr] 4d ⁵ 5s ² | | Ruthenium | 44 | Ru | *[Kr] 4d ⁷ 5s ¹ | | Rhodium | 45 | Rh | *[Kr] 4d ⁸ 5s ¹ | | Palladium | 46 | Pd | *[Kr] 4d ¹⁰ 5s ⁰ | | Silver | 47 | Ag | *[Kr] 4d ¹⁰ 5s ¹ | | Cadmium(non Tr.) | 48 | Cd | [Kr]4d ¹⁰ 5s ² | | | | | | ^{*} Deviate from(n+I); ? May have [Kr] 4d⁶ 5s¹ ### **Third Transition Series** It is a part of period 6: [Xe] 4f¹⁴ 5d¹⁻¹⁰ 6s¹⁻² except La [Xe] 4f⁰ 5d¹ 6s² ? Lanthanum and Hafnium to Mercury This is also called as 5d series | Element | Atomic number | Symbol | Electronic configuration | |------------------|---------------|--------|---| | Lanthanum | 57 | La | *[Xe] 4f ⁰ 5d ¹ 6s ² | | Hafnium | 72 | Hf | [Xe] 4f ¹⁴ 5d ² 6s ² | | Tantalum | 73 | Ta | [Xe] 4f ¹⁴ 5d ³ 6s ² | | Tungsten | 74 | W | [Xe] 4f ¹⁴ 5d ⁴ 6s ² | | Rhenium | 75 | Re | [Xe] 4f ¹⁴ 5d ⁵ 6s ² | | Osmium | 76 | Os | [Xe] 4f ¹⁴ 5d ⁶ 6s ² | | Iridium | 77 | Ir | [Xe] 4f ¹⁴ 5d ⁷ 6s ² | | Platinum | 78 | Pt | *[Xe] 4f ¹⁴ 5d ⁹ 6s ¹ | | Gold | 79 | Au | *[Xe] 4f ¹⁴ 5d ¹⁰ 6s ¹ | | Mercury(non Tr.) | 80 | Hg | [Xe] 4f ¹⁴ 5d ¹⁰ 6s ² | ^{*} Deviate from(n+ ℓ) ### **Inner transition elements** The elements in which the additional electrons enters (n-2)f orbitals are called **inner transition elements**. The valence shell electronic configuration of these elements can be represented as $(n-2)f^{0-14} (n-1)d^{0-1} ns^2$. 4f inner transition metals are known as lanthanides because they come immediately after lanthanum and 5f inner transition metals are known as actinoids because they come immediately after actinium. ### **Electronic Configuration of Lanthanoids (part of period 6)** | • | Element name | Symbol | Z | \mathbf{M} | |---|--------------|--------|----|---| | | Lanthanum | La | 57 | *[Xe] 5d1 6s2 | | • | Cerium | Ce | 58 | *[Xe]4f¹5d¹ 6s² | | • | Praesodymium | Pr | 59 | [Xe]4f³6s² | | • | Neodymium | Nd | 60 | [Xe]4f ⁴ 6s ² | | • | Promethium | Pm | 61 | [Xe]4f ⁶ 6s ² | | • | Samarium | Sm | 62 | [Xe]4f ⁶ 6s ² | | • | Europium | Eu | 63 | $[Xe]4f^76s^2$ | | - | Gadolinium | Gd | 64 | $*[Xe]4f^7 5d^16s^2$ | | • | Terbium | Tb | 65 | [Xe] 4f ⁹ 6s ² | | - | Dysprosium | Dy | 66 | [Xe] 4f ¹⁰ 6s ² | | • | Holmium | Ho | 67 | [Xe] $4f^{11}6s^2$ | | • | Erbium | Er | 68 | [Xe] $4f^{12}6s^2$ | | • | Thulium | Tm | 69 | [Xe] 4f ¹³ 6s ² | | • | Ytterbium | Yb | 70 | [Xe] 4f ¹⁴ 6s ² | | • | Lutetium | Lu | 71 | [Xe] 4f ¹⁴ 5d ¹ 6s ² | Or [Xe]4f² 6s² *deviates from (n+l) ### The Actinoids Result from the filling of the 5f orbitals. All isotopes are radioactive, with only ²³²Th, ²³⁵U, ²³⁸U and ²⁴⁴Pu having long half-lives. Only Th and U occur naturally-both are more abundant in the earth's crust than tin. The others must be made by nuclear processes. ### **Electronic configuration of Actinoids (part of period 7** | Element name | Symbol | Z | \mathbf{M} | |-----------------|------------------|---------|--| | Actinium | Ac | 89 | $*[Rn] 6d^17s^2$ | | Thorium | Th | 90 | *[Rn]5f 6d ² 7s ² | | Protactinium | Pa | 91 | $*[Rn]5f^26d^17s^2$ | | Uranium | \mathbf{U} | 92 | $*[Rn]5f^36d^17s^2$ | | Neptunium | $N_{\mathbf{p}}$ | 93 | *[Rn]5f46d17s2 | | Plutonium | Pu | 94 | $[Rn]5f^{6}7s^{2}$ | | Americium | Am | 95 | [Rn]5f ⁷ 7s ² | | Curium | \mathbf{Cm} | 96 | $*[Rn]5f^{7}6d^{1}7s^{2}$ | | Berkelium | Bk | 97 | $[Rn]5f^97s^2$ | | Californium | Cf | 98 | *[Rn]5f107s2 | | Einsteinium | Es | 99 | $[Rn]5f^{11}7s^2$ | | Fermium | Fm | 100 | $[Rn]5f^{12}7s^2$ | | Mendelevium | Md | 101 | $[Rn]5f^{13}7s^2$ | | Nobelium | No | 102 | $[Rn]5f^{14}7s^{2}$ | | Lawrencium | \mathbf{Lr} | 103 | [Rn]5f146d17s2 | | Or *[Rn]5f96d17 | 's²¸ *deviate | es from | (n+l) | ### **Electric property of elements** Metallic character increase in going down a column and decrease from left to right, they have low IP Non metal character increase in a column by going upward and increase in a period from left to right, they have high IP **Metalloids**: they have both metallic and non metallic properties and they are semiconductive. We recognize 8 elements: B, Si, Ge, As, Sb, Te, Po, At lined by a heavy zigzag line Noble gas do not behave like metals or non metals H cannot be classified as any ## Reading the Periodic Table: Classification Nonmetals, Metals, Metalloids, Noble gases • | | | | | | | | 10 | No | nmeta | als | | | | | | | | |-------------------|----------|----------|---------------------------------------|-----------|-----------|----------------|-----------|-----------|----------|-----------------|-----------------|---------------|-----------------|-----------------|----------------|---------------|-----------| | | | | | | | | | Me | tals | | | | | | | | | | IA | | | | | | | 10 | Me | talloi | ds | | | | | | | VIII | | ¹
H | IIA | | | | | | I | No | ble ga | ses | | IIIA | IVA | VA | VIA | VIIA | H | | 3
Li | 4
Be | | The metals, nonmetals, and metalloids | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | No. | | 11
Na | Mg | IIIB | IVB | VB | VIB | VIIB | - | VIIIB | | IB | IIB | 13
Al | Si | 15
P | 16
S | CI | 18
A1 | | 19
K | Ca | Sc 21 | Ti | 23
V | Cr | Mn | Fe | Co | 28
Ni | Cu | Zn | Ga | Ge | 33
As | 34
Se | 35
Br | 36
Kı | | 37
Rb | 38
Sr | 39
Y | Zr | Nb | Mo | 43
Tc | Ru | 45
Rh | 46
Pd | Ag | 48
Cd | 49
In | Sn Sn | Sb | 52
Te | 53
I | 54
Xe | | 55
Cs | 56
Ba | 57
La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
TI | Pb | 83
Bi | 84
Po | 85
At | 86
Rr | | 87
Fr | 88
Ra | 89
Ac | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | un 110 | Uuu | Uub | | 114 | | 116 | | 118 | | | | | | | | | 101 | | -Rare | eartl | ı elen | nents | | | | i g | 10 | | Lanthanides | | | nides | 58
Ce | 59
Pr | Nd | Pm | 62
Sm | Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | Tm | 70
Yb | Lu Lu | | Actinides | | | | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Li |