Inorganic Chemistry

Second year 1st semester

Lecture 1

syllabus

- 1-Review on classification of periodic table
- Deviation of some d- and f- transition metals from n+1 rule
- -Coordination number of elements, Sigma and pi bonding
- -comparison, of f-elements with d-elements, Lanthanide contraction
- Uniqueness properties of 1st and 2nd period elements Diagonal effect
- 2- Oxidation state and oxidation no. of representative elements, d-block and f-block elements
- 3- Oxides of representative and transition metal elements
- 4-Colors and spectra of transition metal complexes, factors affecting absorption energy
- 5-Magnetism, temperature effect, magnetic moments, ESR

6- Electrode potential

- -(review on cell potential, Nernst equation, relationship of E°cell to Δ G° and K)
- -Born-Harbor cycle of ΔGo
- -oxidation reduction in aq. Solutions as a function of pH,
- -Latimer diagram

7- Symmetry

- -Symmetry operations and Symmetry elements
- -point group symbols from molecular shapes,

8- Solid State Chemistry

- -(lattice points)
- -Weiss and Miller indices
- X- ray diffraction and Bragg's law examples Structures of unit cells of some inorganic compounds

REFERENCES

- 1- G.E.Rodgers, Descriptive inorganic chemistry, coordination and solid state,2nd Ed, Brooks/ Cole, Thomson, (2002)
- 2- G.L.Miessler and D.A.Tarr, Inorganic chemistry. 2nd Ed, Prentice Hall
- 3- F.A.Cotton and G.Wilkinson Basic inorganic chemistry.3rd Ed,Wiley New york, (1995)
- 4- Whitten, Davis, Peck, Stanely, General chemistry, 7th Ed., Brooks/Cole, Thomson, (2003)
- 5- J.E.Huheey, E.A.keiter, R.L.Keiter, Inorganic Chemistry, 4th Ed. Harper New York, (1993) , Collins,
- 6- Shriver & Atkins, Inorganic chemistry, 4th Ed, Peter Atkins, Tina Overton, Oxford, University Press, (2006)
- 7- C.E.Housecroft and A.G.Sharpe, Inorganic chemistry, 3rd Ed., Prentice Hall, (2008)
- 8 N.N.Greenwood and A.Earnshaw, Chemistry of elements, (1999)

To build up an atomic structure we should follow the rules:

1- Pauli principal: No two electrons in the same orbital can have the same four quantum no.s only electrons with opposite spin can occupy the same orbital.

2- Hund's rule: Electrons fill degenerate orbitals one at a time before doubling up in the same orbital"

The p,d,f,g orbitals sets are equivalent in energy but differ in orientation in space $\mathbf{ml}=(2l+1)$ p(3), d(5),f(7), g(9). So they should be half filled before any are filled to avoid electron-electron repulsion as repulsion means high energy

3- Aufbau Principle states that:

"The orbitals of lower energy are filled first with the electrons then the orbitals of high energy are filled."

The orbital energy does not depend on value of n only but also on ℓ , using $(n + \ell)$ rule, the lower energy orbital is that of lower value of $(n + \ell)$. If $(n + \ell)$ values of different orbitals are equal the one with the lowest value of n fill first

The $(n + \ell)$ rule of orbital energies in a multielectron atom

Electrons fill orbitals of different energies by filling the lowest energy first. The energies of orbitals of multielectron atoms follow the $(n + \ell)$ rule: the lowest value of $(n + \ell)$ has the lowest energy.

Examples with $(n + \ell)$ • 1s (1 + 0) < 2s (2 + 0) < 3s (3 + 0) < 3p (3+1), < 4s (4 + 0) < 3d (3 + 2) < 4p (4 + 1)

When $n + \ell$ is the same for two orbitals, the orbital with the higher value of n has the higher energy.

Diagonal Rule

American Classification

European Classification

IUPAC Classification

Classification of periodic table according to groups(families)(1-18)(IUPAC):

1- Main or representative groups a- s-Block (1,2) alkali metals(IA) ₃Li- ₈₇Fr ns¹ GI alkali earth metals(IIA) ns² GII ₄Be-₈₈Ra b- p- Block(13) boron group or family ns² np¹ ₅B- ₈₁TI GIII carbon group(14) or family ns² np² **GIV** ₆C-₈₂Pb 15 nitrogen group or family(pnictogens) ₇N-₈₃Bi $ns^2 np^3$ GV ns² np⁴ GVI 16 oxygen family(Chalcogens) ₈O-₈₄Po ns² np⁵ GVII 17 Halogens ₉F- ₈₅At ns² np⁶ 18 noble gases $_{2}$ He $-[_{10}$ Ne- $_{86}$ Rn] **GVIII**

²⁻ Main Transition metals d-Bolck (3-12) 3d 1st transition series, 4d (2nd transition series, 5d (3rd transition series).....
3-Inner transition metals(rare earth metals) –f-Block 4f(lanthanides) 5f(Actinides)

Classification according to periods(1-7)(n)

- n=1 (2e) 2 elements H He $1s^{1-2}$ n=2 (8e) 8 elements Li Be B C N O F Ne [He] $2s^{1-2}$ 2p $^{1-6}$ n=3 (8) elements Na Mg Al Si P S Cl Ar [Ne] $3s^{1-2}$ 3p $^{1-6}$
- n=4 (18) [Ar] $3d^{1-10} (n+l=5) 4s^{1-2} (n+l=4)4p^{1-6} (n+l=5)$ n=4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
- n=5 (18) [Kr] $4d^{1-10}(n+l=6) 5s^{1-2}(n+l=5) 5p^{1-6} (n+l=6)$ Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Pt Ag Cd In Sn Sb Te I Xe
- n=6 (32) [Xe] $4f^{1-14}$ (n+l=7 lanthanoids) $5d^{1-10}$ (n+l=7) $6s^{1-2}$ (n+l=6) $6p^{1-6}$ $_{55}$ Cs $_{56}$ Ba $_{57}$ La (lanthanoids $_{58}$ Ce- $_{71}$ Lu) $_{72}$ Hf $_{73}$ Ta $_{74}$ W $_{75}$ Re $_{76}$ Os $_{77}$ Ir $_{78}$ Pt $_{79}$ Au $_{80}$ Hg $_{81}$ Tl $_{82}$ Pb $_{83}$ Bi $_{84}$ Po $_{85}$ At $_{86}$ Rn
- n=7 (32) [Rn] $5f^{1-14}(n+l=8 \text{ actinoids}) 6d^{1-10}(n+l=8) 7s^{1-2}(n+l=7) 6d^{1-10} \rightarrow 7p^{1-6}$ $_{87}Fr$ $_{88}Ra$ $_{89}Ac(Actinoids$ $_{90}Th$ $-_{103}Lr(w)) \rightarrow 4^{th}$ transition series

Periodic Table: The three broad Classes Main, Transition, Rare Earth

r(m	nain į	entative group)		Mai	n (Re	epres	entati	ve) 7	Γrans	ition :	metal	S	•	1	100 mm 10	entative group)		
1 8	elements IA			Main (Representative), Transition metals, lanthanides and actinides (rare earth)											elements VIIIA			
	1 H 0079	IIA											ША	IVA	VA	VIA	VIIA	He 4.003
1	3 Li .941	4 Be 9.012		Periodic Table of the Elements Transition metals							5 B 10.811	6 C 12.011		8 O 15.999	9 F 18.998	10 Ne 20.180		
N	11 Va 2.990	12 Mg 24,305	шв	IVB	VB	VIB	VIIB	n metals	VIIIB	- 19	IB	IIB	13 Al 26.982	14 Si 28.086	15 P 30,974	16 S 32,066	17 Cl 35,453	18 Ar 39.948
3	19 K 9.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.88	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	30 Zn 65,39	31 Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.8
F	37 Rb 5.468	38 Sr 67.62	39 Y 88.906	40 Zr 91.224	41 Nb 92,906	42 Mo 95.94	43 Tc 98	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126,905	54 Xe 131.29
(55 Cs 2.905	56 Ba 137,327	57 La 138,906	72 Hf 178.49	73 Ta 180,948	74 W 183.84	75 Re 186,207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196,967	BD Hg 200,59	81 T1 204.383	82 Pb 207.2	83 Bi 208.980	84 Po 209	85 At 210	86 Rn 222
1	87 Fr 223	88 Ra 226.025	89 Ac 227.028	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 262	108 Hs 265	109 Mt 266	110 Uun 269	111 Uuu 272	112 Uub 277		114		116		118
						100000	4,000		1000	Ra	re eartl	ı eleme	nts —		•	-		
	Lanthanides Actinides				58 Ce 140.115	59 Pr 140.908	60 Nd 144.24	61 Pm 145	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.925	66 Dy 162.5	67 Ho 164.93	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967
					90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	103 Lr 262

Valence Electrons

 Every element has both core electrons and valence electrons, e.g. Magnesium: Mg Z=12 → 12 electrons:

- Core electrons are electrons in fully filled shells
- Valence electrons are electrons in the outermost shell that is not fully filled with the exception of the **noble gases** that all have fully filled shells

He: $1s^2$, **Ne**: {He} $2s^2 2p^6$,

Ar: {Ne} $3s^2 3p^6$, **Kr**: {Ar} $4s^2 3d^{10} 4p^6$,

Xe: $\{Kr\}\ 5s^2\ 4d^{10}\ 5p^6$. **Rn**: $\{Xe\}\ 6s^2\ 4f^{14}\ 5d^{10}\ 6p^6$.

core electrons

S- block elements LA and LLA

Group 1 - elements with only <u>one valence electron</u>: These are called the <u>Alkali-Metal Group</u>

Electronic configuration

³ Lithium	Li	{He} <u>2</u> s1
¹¹ Sodium	Na	{Ne} <u>3</u> s1
¹⁹ Potassium	K	{Ar} <u>4</u> s1
³⁷ Rubidium	Rb	{Kr} <u>5</u> s1
55Cesium	Cs	{Xe} <u>6</u> s1
87 Francium	Fr	{Rn} <u>7</u> s¹

Physical Properties
metals i.e good
conductors, soft,
low melting point
and boiling point

S- block elements IA and IIA

Group 2 - The Alkaline Earth Metals(IIA)

electron configuration

beryllium	Be	Z= 4	[He] 2s ²
magnesium	Mg	12	[Ne] 3s ²
calcium	Ca	20	[Ar] 4s ²
strontium	Sr	38	[Kr] 5s ²
barium	Ba	56	[Xe] 6s ²
radium	Ra	88	[Rn] 7s ²

The last element, radium, is radioactive and will not be considered here.

Deviation from (n+1) rule

In some main transition elements and inner transition elements some deviation from (n + l) rule is observed

The interaction between the two Cr and Cu in 1st tr. Series electrons in 4S orbital is of high energy (paring energy) this effect places an extra electron to 3d level and remove from 4s causing

24Cr [Ar] 3d⁵ 4s¹(half-filled orbitals)

29Cu [Ar] 3d¹⁰ 4s¹(half-filled s-orbitals and full d-orbitals)

The difference in energy between an orbital of 2e and 1e can be explained as the pairing energy is higher than energy gap between ns & (n-1)d as the value of Z^* increase the energy of shells decreases

Controlling factors on limitation of Aufbau principle

1-Stability with half filled & completely filled

2-The energies of neighboring subshells e.g. (4s, 3d), (5s, 4d), (4f, 5d), (5f, 6d) etc are quite close together (low energy gap)

3- Electron-electron repulsion (high pairing energy)

Main transition elements (d-block)

- •Main transition elements (d-block) take their collective name from their role as a bridge between the chemically active metals of gr. IA & IIA and much less active metals of gr. 12(Zn family), 13(Boron family), 14(Carbon family).
- •As s-block elements are metallic in nature and p-block elements are non-metallic, hence d-block elements show a transition from metallic to non-metallic nature. In other words, they show a transition from most electropositive s-block elements to least electropositive or most electronegative p-block elements.
- •The elements $_{30}$ Zn , $_{48}$ Cd , $_{80}$ Hg (gr. 12) have unique properties , while they resemble the alkaline earth metals IIA in giving oxidation state of (+2) , they differ from IIA of having higher Z* and more polarizing effect

1st transition element series: A part of (Period 4) [Ar] 3d¹⁻¹⁰ 4s¹⁻² This is also called as 3d series

Sc
$$(Z=21)$$
 [Ar] $3d^1 4s^2$
Ti $(Z=22)$ [Ar] $3d^2 4s^2$
V $(Z=23)$ [Ar] $3d^3 4s^2$
Cr $(Z=24$ *[Ar] $3d^5 4s^1$
Mn $(Z=25)$ [Ar] $3d^5 4s^2$
Fe $(Z=26)$ [Ar] $3d^6 4s^2$
Co $(Z=27)$ [Ar] $3d^7 4s^2$
Ni $(Z=28)$ [Ar] $3d^8 4s^2$
Cu $(Z=29)$ *[Ar] $3d^{10} 4s^1$
Zn $(Z=30)$ [Ar] $3d^{10} 4s^2$ (non Tr.)

* Deviate from(n+l)

^{7 4}

Second transition series: A part of (period 5): [Kr] 4d¹⁻¹⁰ 5s ¹⁻² This is also called as 4d series

Element	Atomic Number	Symbol	Electronic configuration
Yttrium	39	Y	[Kr] 4d¹ 5s²
Zirconium	40	Zr	[Kr] 4d ² 5s ²
Niobium	41	Nb	*[Kr] 4d ⁴ 5s ¹
Molybdenum	42	Мо	*[Kr] 4d ⁵ 5s ¹
Technetium	43	Tc	?[Kr] 4d ⁵ 5s ²
Ruthenium	44	Ru	*[Kr] 4d ⁷ 5s ¹
Rhodium	45	Rh	*[Kr] 4d ⁸ 5s ¹
Palladium	46	Pd	*[Kr] 4d ¹⁰ 5s ⁰
Silver	47	Ag	*[Kr] 4d ¹⁰ 5s ¹
Cadmium(non Tr.)	48	Cd	[Kr]4d ¹⁰ 5s ²

^{*} Deviate from(n+I); ? May have [Kr] 4d⁶ 5s¹

Third Transition Series

It is a part of period 6: [Xe] 4f¹⁴ 5d¹⁻¹⁰ 6s¹⁻² except La [Xe] 4f⁰ 5d¹ 6s² ? Lanthanum and Hafnium to Mercury This is also called as 5d series

Element	Atomic number	Symbol	Electronic configuration
Lanthanum	57	La	*[Xe] 4f ⁰ 5d ¹ 6s ²
Hafnium	72	Hf	[Xe] 4f ¹⁴ 5d ² 6s ²
Tantalum	73	Ta	[Xe] 4f ¹⁴ 5d ³ 6s ²
Tungsten	74	W	[Xe] 4f ¹⁴ 5d ⁴ 6s ²
Rhenium	75	Re	[Xe] 4f ¹⁴ 5d ⁵ 6s ²
Osmium	76	Os	[Xe] 4f ¹⁴ 5d ⁶ 6s ²
Iridium	77	Ir	[Xe] 4f ¹⁴ 5d ⁷ 6s ²
Platinum	78	Pt	*[Xe] 4f ¹⁴ 5d ⁹ 6s ¹
Gold	79	Au	*[Xe] 4f ¹⁴ 5d ¹⁰ 6s ¹
Mercury(non Tr.)	80	Hg	[Xe] 4f ¹⁴ 5d ¹⁰ 6s ²

^{*} Deviate from(n+ ℓ)

Inner transition elements

The elements in which the additional electrons enters (n-2)f orbitals are called **inner transition elements**. The valence shell electronic configuration of these elements can be represented as $(n-2)f^{0-14} (n-1)d^{0-1} ns^2$.

4f inner transition metals are known as lanthanides because they come immediately after lanthanum and 5f inner transition metals are known as actinoids because they come immediately after actinium.

Electronic Configuration of Lanthanoids (part of period 6)

•	Element name	Symbol	Z	\mathbf{M}
	Lanthanum	La	57	*[Xe] 5d1 6s2
•	Cerium	Ce	58	*[Xe]4f¹5d¹ 6s²
•	Praesodymium	Pr	59	[Xe]4f³6s²
•	Neodymium	Nd	60	[Xe]4f ⁴ 6s ²
•	Promethium	Pm	61	[Xe]4f ⁶ 6s ²
•	Samarium	Sm	62	[Xe]4f ⁶ 6s ²
•	Europium	Eu	63	$[Xe]4f^76s^2$
-	Gadolinium	Gd	64	$*[Xe]4f^7 5d^16s^2$
•	Terbium	Tb	65	[Xe] 4f ⁹ 6s ²
-	Dysprosium	Dy	66	[Xe] 4f ¹⁰ 6s ²
•	Holmium	Ho	67	[Xe] $4f^{11}6s^2$
•	Erbium	Er	68	[Xe] $4f^{12}6s^2$
•	Thulium	Tm	69	[Xe] 4f ¹³ 6s ²
•	Ytterbium	Yb	70	[Xe] 4f ¹⁴ 6s ²
•	Lutetium	Lu	71	[Xe] 4f ¹⁴ 5d ¹ 6s ²

Or [Xe]4f² 6s² *deviates from (n+l)

The Actinoids

Result from the filling of the 5f orbitals.

All isotopes are radioactive, with only ²³²Th, ²³⁵U, ²³⁸U and ²⁴⁴Pu having long half-lives.

Only Th and U occur naturally-both are more abundant in the earth's crust than tin.

The others must be made by nuclear processes.

Electronic configuration of Actinoids (part of period 7

Element name	Symbol	Z	\mathbf{M}
Actinium	Ac	89	$*[Rn] 6d^17s^2$
Thorium	Th	90	*[Rn]5f 6d ² 7s ²
Protactinium	Pa	91	$*[Rn]5f^26d^17s^2$
Uranium	\mathbf{U}	92	$*[Rn]5f^36d^17s^2$
Neptunium	$N_{\mathbf{p}}$	93	*[Rn]5f46d17s2
Plutonium	Pu	94	$[Rn]5f^{6}7s^{2}$
Americium	Am	95	[Rn]5f ⁷ 7s ²
Curium	\mathbf{Cm}	96	$*[Rn]5f^{7}6d^{1}7s^{2}$
Berkelium	Bk	97	$[Rn]5f^97s^2$
Californium	Cf	98	*[Rn]5f107s2
Einsteinium	Es	99	$[Rn]5f^{11}7s^2$
Fermium	Fm	100	$[Rn]5f^{12}7s^2$
Mendelevium	Md	101	$[Rn]5f^{13}7s^2$
Nobelium	No	102	$[Rn]5f^{14}7s^{2}$
Lawrencium	\mathbf{Lr}	103	[Rn]5f146d17s2
Or *[Rn]5f96d17	's²¸ *deviate	es from	(n+l)

Electric property of elements

Metallic character increase in going down a column and decrease from left to right, they have low IP

Non metal character increase in a column by going upward and increase in a period from left to right, they have high IP

Metalloids: they have both metallic and non metallic properties and they are semiconductive. We recognize 8 elements:

B, Si, Ge, As, Sb, Te, Po, At lined by a heavy zigzag line

Noble gas do not behave like metals or non metals

H cannot be classified as any

Reading the Periodic Table: Classification Nonmetals, Metals, Metalloids, Noble gases •

							10	No	nmeta	als							
								Me	tals								
IA							10	Me	talloi	ds							VIII
¹ H	IIA						I	No	ble ga	ses		IIIA	IVA	VA	VIA	VIIA	H
3 Li	4 Be		The metals, nonmetals, and metalloids									5 B	6 C	7 N	8 O	9 F	No.
11 Na	Mg	IIIB	IVB	VB	VIB	VIIB	-	VIIIB		IB	IIB	13 Al	Si	15 P	16 S	CI	18 A1
19 K	Ca	Sc 21	Ti	23 V	Cr	Mn	Fe	Co	28 Ni	Cu	Zn	Ga	Ge	33 As	34 Se	35 Br	36 Kı
37 Rb	38 Sr	39 Y	Zr	Nb	Mo	43 Tc	Ru	45 Rh	46 Pd	Ag	48 Cd	49 In	Sn Sn	Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	Pb	83 Bi	84 Po	85 At	86 Rr
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	un 110	Uuu	Uub		114		116		118
							101		-Rare	eartl	ı elen	nents				i g	10
Lanthanides			nides	58 Ce	59 Pr	Nd	Pm	62 Sm	Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	Tm	70 Yb	Lu Lu
Actinides				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Li