
Basic Garbage Collection

Garbage Collection (GC) is the automatic reclamation of heap records that will
never again be accessed by the program. GC is universally used for languages with
closures and complex data structures that are implicitly heap-allocated. GC may
be useful for any language that supports heap allocation, because it obviates the
need for explicit deallocation, which is tedious, error-prone, and often non-
modular.
GC technology is increasingly interesting for “conventional” language
implementation, especially as users discover that free isn’t free. i.e., explicit
memory management can be costly too. We view GC as part of an allocation
service provided by the runtime environment to the user program, usually
called the mutator(user program). When the mutator needs heap space, it calls
an allocation routine, which in turn performs garbage collection activities if
needed.

Many high-level programming languages remove the burden of manual memory
management from the programmer by offering automatic garbage collection,
which deallocates unreachable data. Garbage collection dates back to the initial
implementation of Lisp in 1958. Other significant languages that offer garbage
collection include Java, Perl, ML, Modula-3, Prolog, and Smalltalk.

Principles
The basic principles of garbage collection are:
1. Find data objects in a program that cannot be accessed in the future
2. Reclaim the resources used by those objects

Many computer languages require garbage collection, either as part of
the language specification (e.g., Java, C#, and most scripting languages) or
effectively for practical implementation (e.g., formal languages like lambda
calculus); these are said to be garbage collected languages. Other languages were
designed for use with manual memory management, but have garbage collected
implementations available (e.g., C, C++). Some languages, like Ada, Modula-3,
and C++/CLI allow both garbage collection and manual memory management to
co-exist in the same application by using separate heaps for collected and manually
managed objects.

Why Garbage Collection?

 Today’s programs consume storage freely
 1GB laptops, 1-4GB deskops, 8-512GB servers
 64-bit address spaces (SPARC, Itanium, Opteron)
 … and mismanage it
 Memory leaks, dangling references, double free, misaligned addresses, null

pointer dereference, heap fragmentation
 Poor use of reference locality, resulting in high cache miss rates and/or

excessive demand paging
 Explicit memory management breaks high-level programming

abstraction

Kinds of Memory Allocation

Example

static int i;
void foo(void) {
 int j;
 int* p = (int*) malloc(…);
}
static int i;

 By compiler (in text area)
 Available through entire runtime
 Fixed size

int j;

 Upon procedure call (on stack)
 Available during execution of call
 Fixed size

int* p = (int*) malloc(…);

 Dynamically allocated at runtime (on heap)
 Available until explicitly deallocated
 Dynamically varying size

Cell = data item in the heap

Cells are “pointed to” by pointers held in registers, stack, global/static memory, or
in other heap cells

 Roots: registers, stack locations, global/static variables
 A cell is live if its address is held in a root or held by another live cell in the

heap

Example of Garbage

class node {
 int value;
 node next;
}
node p, q;
p = new node();
q = new node();
q = p;
delete p;

Simple Heap Model
For simplicity, consider a heap containing “cons” cells.

Heap consists of two-word cells and each element of a cell is a pointer to another
cell. There may also be pointers into the heap from the stack and global variables;
these constitute the root set (root set is used as the starting point in determining all
reachable data). At any given moment, the system’s live data are the heap cells
that can be reached by some series of pointer traversals starting from a member
of the root set. Garbage is the heap memory containing non-live cells.

Reference Counting
The most straightforward way to recognize garbage and make its space reusable
for new cells is to use reference counting. We augment each heap cell with a
count field that records the total number of pointers in the system that point to the
cell. Each time we create or copy a pointer to the cell, we increment the count;
each time we destroy a pointer, we decrement the count. If the reference count
ever goes to 0, we can reuse the cell by placing it on a free list.

When allocating a new cell, we first try the free list (before extending the heap).
Pros:
Conceptually simple; Immediate reclamation of storage

Cons:
Extra space; Extra time (every pointer assignment has to change/check count)
Can’t collect “cyclic garbage”

Example: Reference Counting

The Trace-Based Collection
Instead of collecting garbage as it is created, trace-based collectors run
periodically to find unreachable objects and reclaim their space. Typically, we
run the trace based collector whenever the free space is exhausted or its amount
drops below some threshold.
All trace-based algorithms compute the set of reachable objects and then take the
complement of this set. Memory is therefore recycled as follows:
a) The program or mutator runs and makes allocation requests.
b) The garbage collector discovers reachability by tracing.
c) The garbage collector reclaims the storage for unreachable objects.

This cycle is illustrated in Figure below in terms of four states for chunks of
memory:

Four States of Memory Chunks
1. Free = not holding an object; available for allocation (a list of free space).
2. Unreached = Holds an object, but has not yet been reached from the root set
(a work list).
3. Unscanned = Reached from the root set, but its references not yet followed (a
list of allocated objects).
4. Scanned = Reached and references followed (a list of scanned objects).

Baker’s Algorithm
 Scanned = ∅
 Move objects in root set (program vars) from Unreached to Unscanned
 While Unscanned ≠ ∅
 move object o from Unscanned to Scanned
 scan o, move newly reached objects from Unreached to Unscanned
 Free = Free ∪ Unreached
 Unreached = Scanned

States of memory in a garbage collection cycle

Free, Unreached, Unscanned, and Scanned. The state of a chunk might be stored
in the chunk itself, or it might be implicit in the data structures used by the
garbage-collection algorithm.
While trace- based algorithms may differ in their implementation, they can all be
described in terms of the following states:
1. Free. A chunk is in the Free state if it is ready to be allocated. Thus, a Free
chunk must not hold a reachable object.
2. Unreached. Chunks are presumed unreachable, unless proven reachable by
tracing. A chunk is in the Unreached state at any point during garbage collection if
its reachability has not yet been established. Whenever a chunk is allocated by the
memory manager, its state is set to Unreached as illustrated in Fig (a).
3. Unscanned, Chunks that are known to be reachable are either in state
Unscanned or state Scanned. A chunk is in the Unscanned state if it is known to
be reachable, but its pointers have not yet been scanned, see Fig (b).
4. Scanned. Every Unscanned object will eventually be scanned and transition
to the Scanned state, see Fig. (b).

The garbage collector reclaims the space they occupy and places the chunks in the
Free state, as illustrated by the solid transition in Fig. (c).

Mark and Sweep

There’s no real need to remove garbage as long as unused memory is available. So
GC is typically deferred until the allocator fails due to lack of memory. The
collector then takes control of the processor, performs a collection—hopefully
freeing enough memory to satisfy the allocation request—and returns control to the
mutator. This approach is known generically as “stop and collect”. There are
several options for the collection algorithm. Perhaps the simplest is called mark
and sweep, which operates in two phases:

 First, mark each live data cell by tracing all pointers starting with the root set.
 Then, sweep all unmarked cells onto the free list (also unmarking the marked
cells).

Marking

1. Assume all objects in Unreached state.
2. Start with the root set. Put them in state
Unscanned.
3. while Unscanned objects remain do
 examine one of these objects;
 make its state be Scanned;

 add all referenced objects to
Unscanned if they have not been there;

 end;

Sweeping

 Place all objects still in the
Unreached state into the Free state.
 Place all objects in Scanned state
into the Unreached state.
 To prepare for the next mark-and-
sweep.

Copying Collection
Mark and sweep has several problems:
• It does work proportional to the size of the entire heap.
• It leaves memory fragmented.
• It doesn’t cope well with non-uniform cell sizes.
An alternative that solves these problems is copying(Compacting) collection.
The idea is to divide the available heap into 2 semi-spaces. Initially, the allocator
uses just one space; when it fills up, the collector copies the live data (only) into
the other space, and reverses the role of the spaces.

Copying collection must fix up all pointers to copied data. To do this, it leaves a
forwarding pointer in the “from” space after the copy is made. A copying
collector typically traverses the live data graph breadth first, using “to” space
itself as the search “queue”. Copying compacts live data, which improves locality
and may be good for virtual memory and caches. Compacting collectors tend to
cause caches to become more effective, improving run-time performance after
collection. Compacting collectors are difficult to implement because they change
the locations of the objects in the heap. This means that all pointers to moved
objects must also be updated. This extra work can be expensive in time and
storage.

