
Basic Garbage Collection 
 
Garbage Collection (GC) is the automatic reclamation of heap records that will 
never again be accessed by the program. GC is universally used for languages with 
closures and complex data structures that are implicitly heap-allocated. GC may 
be useful for any language that supports heap allocation, because it obviates the 
need for explicit deallocation, which is tedious, error-prone, and often non-
modular. 
GC technology is increasingly interesting for “conventional” language 
implementation, especially as users discover that free isn’t free. i.e., explicit 
memory management can be costly too. We view GC as part of an allocation 
service provided by the runtime environment to the user program, usually 
called the mutator( user program). When the mutator needs heap space, it calls 
an allocation routine, which in turn performs garbage collection activities if 
needed. 
 
Many high-level programming languages remove the burden of manual memory 
management from the programmer by offering automatic garbage collection, 
which deallocates unreachable data. Garbage collection dates back to the initial 
implementation of Lisp in 1958. Other significant languages that offer garbage 
collection include Java, Perl, ML, Modula-3, Prolog, and Smalltalk. 
 
Principles 
The basic principles of garbage collection are: 
1. Find data objects in a program that cannot be accessed in the future 
2. Reclaim the resources used by those objects 
 
Many computer languages require garbage collection, either as part of 
the language specification (e.g., Java, C#, and most scripting languages) or 
effectively for practical implementation (e.g., formal languages like lambda 
calculus); these are said to be garbage collected languages. Other languages were 
designed for use with manual memory management, but have garbage collected 
implementations available (e.g., C, C++). Some languages, like Ada, Modula-3, 
and C++/CLI allow both garbage collection and manual memory management to 
co-exist in the same application by using separate heaps for collected and manually 
managed objects.  
 
 
 
 



Why Garbage Collection? 

 Today’s programs consume storage freely 
 1GB laptops, 1-4GB deskops, 8-512GB servers 
 64-bit address spaces (SPARC, Itanium, Opteron) 
 … and mismanage it 
 Memory leaks, dangling references, double free, misaligned addresses, null 

pointer dereference, heap fragmentation 
 Poor use of reference locality, resulting in high cache miss rates and/or 

excessive demand paging 
 Explicit memory management breaks high-level programming 

abstraction 

 

Kinds of Memory Allocation 

Example 

static int i; 
void foo(void) { 
   int j; 
   int* p = (int*) malloc(…); 
} 
static int i; 

 By compiler (in text area) 
 Available through entire runtime 
 Fixed size 

int j; 

 Upon procedure call (on stack) 
 Available during execution of call 
 Fixed size 

int* p = (int*) malloc(…); 

 Dynamically allocated at runtime (on heap) 
 Available until explicitly deallocated 
 Dynamically varying size 



Cell = data item in the heap 

Cells are “pointed to” by pointers held in registers, stack, global/static memory, or 
in other heap cells 

 Roots: registers, stack locations, global/static variables 
 A cell is live if its address is held in a root or held by another live cell in the 

heap 

Example of Garbage 

class node { 
 int value; 
 node next; 
} 
node p, q; 
p = new node(); 
q = new node(); 
q = p; 
delete p; 

 

 



Simple Heap Model 
For simplicity, consider a heap containing “cons” cells. 
 

 
 
Heap consists of two-word cells and each element of a cell is a pointer to another 
cell. There may also be pointers into the heap from the stack and global variables; 
these constitute the root set (root set is used as the starting point in determining all 
reachable data). At any given moment, the system’s live data are the heap cells 
that can be reached by some series of pointer traversals starting from a member 
of the root set. Garbage is the heap memory containing non-live cells.  
 
Reference Counting 
The most straightforward way to recognize garbage and make its space reusable 
for new cells is to use reference counting. We augment each heap cell with a 
count field that records the total number of pointers in the system that point to the 
cell. Each time we create or copy a pointer to the cell, we increment the count; 
each time we destroy a pointer, we decrement the count. If the reference count 
ever goes to 0, we can reuse the cell by placing it on a free list. 
 

 
 
When allocating a new cell, we first try the free list (before extending the heap). 
Pros: 
Conceptually simple; Immediate reclamation of storage 



Cons: 
Extra space; Extra time (every pointer assignment has to change/check count) 
Can’t collect “cyclic garbage” 
 
Example: Reference Counting 
 

 
 

 
 

 
 
The Trace-Based Collection 
Instead of collecting garbage as it is created, trace-based collectors run 
periodically to find unreachable objects and reclaim their space.  Typically, we 
run the trace based collector whenever the free space is exhausted or its amount 
drops below some threshold.  
All trace-based algorithms compute the set of reachable objects and then take the 
complement of this set. Memory is therefore recycled as follows:  
a) The program or mutator runs and makes allocation requests.  
b) The garbage collector discovers reachability by tracing.  
c) The garbage collector reclaims the storage for unreachable objects.  
 
This cycle is illustrated in Figure below in terms of four states for chunks of 
memory:  
 



Four States of Memory Chunks 
1. Free  = not holding an object; available for allocation (a list of free space). 
2. Unreached  = Holds an object, but has not yet been reached from the root set 
(a work list). 
3. Unscanned  = Reached from the root set, but its references not yet followed (a 
list of allocated objects). 
4. Scanned  = Reached and references followed (a list of scanned objects). 
 
Baker’s Algorithm 
 Scanned = ∅ 
 Move objects in root set (program vars) from Unreached to Unscanned 
 While Unscanned ≠ ∅ 
 move object o from Unscanned to Scanned 
 scan o, move newly reached objects from Unreached to Unscanned 
 Free = Free ∪ Unreached  
 Unreached = Scanned 
 

 
States of memory in a garbage collection cycle 

 



Free, Unreached, Unscanned, and Scanned. The state of a chunk might be stored 
in the chunk itself, or it might be implicit in the data structures used by the 
garbage-collection algorithm.  
While trace- based algorithms may differ in their implementation, they can all be 
described in terms of the following states:  
1. Free. A chunk is in the Free state if it is ready to be allocated. Thus, a Free 
chunk must not hold a reachable object.  
2. Unreached. Chunks are presumed unreachable, unless proven reachable by 
tracing.  A chunk is in the Unreached state at any point during garbage collection if 
its reachability has not yet been established. Whenever a chunk is allocated by the 
memory manager, its state is set to Unreached as illustrated in Fig (a).  
3. Unscanned, Chunks that are known to be reachable are either in state 
Unscanned or state Scanned. A chunk is in the Unscanned state if it is known to 
be reachable, but its pointers have not yet been scanned, see Fig (b).  
4. Scanned. Every Unscanned object will eventually be scanned and transition 
to the Scanned state, see Fig. (b).  
 
The garbage collector reclaims the space they occupy and places the chunks in the 
Free state, as illustrated by the solid transition in Fig. (c).  
 
 
Mark and Sweep 
 
There’s no real need to remove garbage as long as unused memory is available. So 
GC is typically deferred until the allocator fails due to lack of memory. The 
collector then takes control of the processor, performs a collection—hopefully 
freeing enough memory to satisfy the allocation request—and returns control to the 
mutator. This approach is known generically as “stop and collect”. There are 
several options for the collection algorithm. Perhaps the simplest is called mark 
and sweep, which operates in two phases: 
 
 First, mark each live data cell by tracing all pointers starting with the root set. 
 Then, sweep all unmarked cells onto the free list (also unmarking the marked 
cells). 
 
 
 
 
 
 



Marking 
 
1.  Assume all objects in Unreached state. 
2.  Start with the root set.  Put them in state 
Unscanned. 
3.  while Unscanned objects remain do 
     examine one of these objects; 
     make its state be Scanned; 

     add all referenced objects to    
Unscanned if they have not been there; 

 end; 

Sweeping 
 
 Place all objects still in the 
Unreached state into the Free state. 
 Place all objects in Scanned state 
into the Unreached state. 
 To prepare for the next mark-and-
sweep. 
 

 
 
Copying Collection 
Mark and sweep has several problems: 
• It does work proportional to the size of the entire heap. 
• It leaves memory fragmented. 
• It doesn’t cope well with non-uniform cell sizes. 
An alternative that solves these problems is copying(Compacting) collection. 
The idea is to divide the available heap into 2 semi-spaces. Initially, the allocator 
uses just one space; when it fills up, the collector copies the live data (only) into 
the other space, and reverses the role of the spaces. 
 

 
 

 
 



Copying collection must fix up all pointers to copied data. To do this, it leaves a 
forwarding pointer in the “from” space after the copy is made. A copying 
collector typically traverses the live data graph breadth first, using “to” space 
itself as the search “queue”. Copying compacts live data, which improves locality 
and may be good for virtual memory and caches. Compacting collectors tend to 
cause caches to become more effective, improving run-time performance after 
collection. Compacting collectors are difficult to implement because they change 
the locations of the objects in the heap. This means that all pointers to moved 
objects must also be updated. This extra work can be expensive in time and 
storage. 
 
 


