
Evolutionary Computing
Forth year

Dr. Salah Al-Obaidi

Lecture #6: Fitness and Selection Fall 2024

Contents

Contents i

4 Fitness and Selection 40

4.1 Population Management Models 40

4.2 Parent Selection . 41

4.2.1 Fitness Proportional Selection 41

4.2.2 Ranking Selection 43

4.2.3 Implementing Selection Probabilities 44

4.2.4 Tournament Selection 46

4.2.5 Uniform Parent Selection 48

i

4. Fitness and Selection

As explained in lecture #5, there are two fundamental forces that form the

basis of evolutionary systems: variation and selection. In this lecture, we

discuss the EA components behind the second one.

4.1 Population Management Models

In the previous lecture, we focused on the way that potential solutions

are represented to give a population of diverse individuals, and on the

way that variation (recombination and mutation) operators work on those

individuals to yield offspring. These offspring will generally inherit some of

their parents’ properties but also differ slightly from them, providing new

potential solutions to be evaluated. We now turn our attention to the second

important element of the evolutionary process – the differential survival of

individuals to compete for resources and take part in reproduction, based

on their relative fitness.

Two different models of population management are found in the

literature: the generational model and the steady-state model. For

the generational model:

• In each generation we begin with a population of size µ, from which

40

4.2. Parent Selection

a mating pool of parents is selected.

• Every member of the pool is a copy of something in the population,

but the proportions will probably differ, with (usually) more copies

of the ‘better’ parents.

• Next, λ offspring are created from the mating pool by the application

of variation operators, and evaluated.

• After each generation, the whole population is replaced by µ

individuals selected from its offspring, which is called the next

generation.

In the model typically used within the Simple Genetic Algorithm,

the population, mating pool and offspring are all the same size, so that

each generation is replaced by all of its offspring.

In the steady-state model, the entire population is not changed at once,

but rather a part of it. In this case, λ(≤ µ) old individuals are replaced

by λ new ones, the offspring. The proportion of the population that is

replaced is called the generational gap, and is equal to λ/µ.

4.2 Parent Selection

4.2.1 Fitness Proportional Selection

Fitness proportional selection (FPS) is used for selecting potentially

useful solutions for recombination. For each choice, the probability that

an individual i is selected for mating depends on its absolute fitness value

41

4. Fitness and Selection

compared to the absolute fitness values of the rest of the population.

Observing that the sum of the probabilities over the whole population must

equal 1. If fi is the fitness of individual i in the population, its probability

of being selected using FPS is PF P S = fi/
∑∑∑µ

j=1 fj, where µ is the number

of individuals in the population.

There are some problems with this selection mechanism:

• Outstanding individuals take over the entire population very quickly.

This tends to focus the search process and makes it less likely that

the algorithm will thoroughly search the space of possible solutions,

where better solutions may exist. This phenomenon is often observed

in early generations, when many of the randomly created individuals

will have low fitness, and is known as premature convergence.

• When fitness values are all very close together, there is almost no

selection pressure, so the selection is almost uniformly random, and

having a slightly better fitness is not very ‘useful’ to an individual.

Therefore, later in a run, when some convergence has taken place and

the worst individuals are gone, it is typically observed that the mean

population fitness only increases very slowly.

• The mechanism behaves differently if the fitness function is transposed.

This last point is illustrated in Table 4.1, which shows three individuals

and a fitness function with f(A) = 1, f(B) = 4, and f(C) = 5.

Transposing this fitness function changes the selection probabilities, while

the shape of the fitness landscape, and hence the location of the optimum,

remains the same.

42

4.2. Parent Selection

Table 4.1: Transposing the fitness function changes selection probabilities
for fitness-proportionate selection.

Individual Fitness
for f

Sel. prob.
for f

Fitness
for f + 10

Sel. prob.
for f + 10

Fitness
for f + 100

Sel. prob.
for f + 100

A 1 0.1 11 0.275 101 0.326
B 4 0.4 14 0.35 104 0.335
C 5 0.5 15 0.375 105 0.339

Sum 10 1.0 40 1.0 310 1.0

4.2.2 Ranking Selection

Rank-based selection is another method that was inspired by the observed

drawbacks of fitness proportionate selection. It preserves a constant selection

pressure by sorting the population on the basis of fitness, and then allocating

selection probabilities to individuals according to their rank, rather than

according to their actual fitness values. Let us assume that the ranks are

numbered so that an individual’s rank notes how many worse solutions are

in the population, so the best has rank µ − 1 and the worst has rank 0.

The mapping from rank number to selection probability can be done in

many ways, for example, linearly or exponentially decreasing. As with FPS

above, and any selection scheme, we insist that the sum over the population

of the selection probabilities must be unity – that we must select one of

the parents.

The usual formula for calculating the selection probability for linear

ranking schemes is parameterised by a value s (1 ≤ s ≤ 2). In the case of

a generational EA, where µ = λ, this can be interpreted as the expected

number of offspring allotted to the fittest individual. Since this individual

has rank µ − 1, and the worst has rank 0, then the selection probability

43

4. Fitness and Selection

for an individual of rank i is:

Plin−rank(i) =
(2 − s)

µ
+

2i(s − 1)
µ(µ − 1)

(4.1)

Note that the first term will be constant for all individuals. Since the

second term will be zero for the worst individual (with rank i = 0), it can

be thought of as the ‘baseline’ probability of selecting that individual.

In Table 4.2 we show an example of how the selection probabilities differ

for a population of µ = 3 different individuals with fitness proportionate

and rank-based selection with different values of s.

Table 4.2: Fitness proportionate (FP) versus linear ranking (LR) selection.

Individual Fitness Rank PselFP PselLR(s = 2) PselLR(s = 1.5)
A 1 0 0.1 0 0.167
B 4 1 0.4 0.33 0.33
C 5 2 0.5 0.67 0.5

Sum 10 1.0 1.0 1.0

4.2.3 Implementing Selection Probabilities

The description above provides two alternative schemes for deciding a

probability distribution that defines the likelihood of each individual in the

population being selected for reproduction. In an ideal world, the mating

pool of parents taking part in recombination would have exactly the same

proportions as this selection probability distribution. This would mean

that the number of any given individual would be given by its selection

probability, multiplied by the size of the mating pool. However, in practice,

this is not possible because of the finite size of the population, i.e., when

44

4.2. Parent Selection

we do this multiplication, we find typically that some individuals have

an expected number of copies which is noninteger – whereas of course in

practice we need to select complete individuals. In other words, the mating

pool of parents is sampled from the selection probability distribution, but

will not in general accurately reflect it.

The simplest way of achieving this sampling is known as the roulette

wheel algorithm. Conceptually this is the same as repeatedly spinning a

one-armed roulette wheel, where the sizes of the holes reflect the selection

probabilities. In general, the algorithm can be applied to select λ members

from the set of µ parents into a mating pool.

To illustrate the workings of this algorithm, we will assume some order

over the population (ranking or random) from 1 to µ, so that we can

calculate the cumulative probability distribution, which is a list of values

[a1, a2, · · ·, aµ] such that ai = ∑∑∑i
1 Psel(i), where Psel(i) is defined by the

selection distribution - fitness proportionate or ranking. Note that this

implies aµ = 1. The outlines of the algorithm are given in Figure 4.1.

Despite its inherent simplicity, it has been recognised that the roulette

wheel algorithm does not in fact give a particularly good sample of the

required distribution. Whenever more than one sample is to be drawn from

the distribution - for instance λ - the use of the stochastic universal

sampling (SUS) algorithm is preferred. Conceptually, this is equivalent

to making one spin of a wheel with λ equally spaced arms, rather than λ

spins of a one-armed wheel. Given the same list of cumulative selection

probabilities [a1, a2, · · ·, aµ], it selects the mating pool as described in

Figure 4.2.

45

4. Fitness and Selection

Figure 4.1: Pseudocode for the roulette wheel algorithm.

Since the value of the variable r (in Figure 4.2) is initialised in the range

[0, 1/µ] and increases by an amount 1/µ every time a selection is made,

it is guaranteed that the number of copies made of each parent i is at least

the integer part of µ· Psel(i) and is no more than one greater. Finally,

we should note that with minor changes to the code, SUS can be used to

make any number of selections from the parents, and in the case of making

just one selection, it is the same as the roulette wheel.

4.2.4 Tournament Selection

The previous two selection methods and the algorithms used to sample

from their probability distributions relied on a knowledge of the entire

population. However, in certain situations, for example, if the population

size is very large, or if the population is distributed in some way (perhaps on

a parallel system), obtaining this knowledge is either highly time-consuming

46

4.2. Parent Selection

Figure 4.2: Pseudocode for the stochastic universal sampling algorithm
making selections.

or at worst impossible. Furthermore, both methods assume that fitness

is a quantifiable measure (based on some explicit objective function to be

optimised), which may not be valid. Think, for instance, of an application

evolving game playing strategies. In this case, we might not be able to

quantify the strength of a given individual (strategy) in isolation, but we can

compare any two of them by simulating a game played by these strategies

as opponents.

Tournament selection is an operator with the useful property that it

does not require any global knowledge of the population, nor a quantifiable

measure of quality. Instead, it only relies on an ordering relation that can

compare and rank any two individuals. It is therefore conceptually simple

and fast to implement and apply. The application of tournament selection

to select λ members of a pool of µ individuals works according to the

47

4. Fitness and Selection

procedure shown in Figure 4.3.

Figure 4.3: Pseudocode for the tournament selection algorithm.

4.2.5 Uniform Parent Selection

In some dialects of EC it is common to use mechanisms such that each

individual has the same chance to be selected. At first sight this might

appear to suggest that there is no selection pressure in the algorithm, which

would indeed be true if this was not coupled with a strong fitness-based

survivor selection mechanism.

In Evolutionary Programming, usually there is no recombination, only

mutation, and parent selection is deterministic. In particular, each parent

produces exactly one child by mutation. Evolution Strategies are also

usually implemented with uniform random selection of parents into the

mating pool, i.e., for each 1 ≤ i ≤ µ we have Puniform(i) = 1/µ.

48

	Contents
	Fitness and Selection
	Population Management Models
	Parent Selection
	Fitness Proportional Selection
	Ranking Selection
	Implementing Selection Probabilities
	Tournament Selection
	Uniform Parent Selection

