Computer Organization and Architecture

Lecture 7: Memory Hierarchy Cache Memory

Murtadha Hssayeni, Ph.D.

m.hssayeni@uobabylon.edu.iq

Outlines

Memory Hierarchy

oKey Characteristics of Computer Memory Systems

•The Major Types of Semiconductor Memory

ODRAM and SRAM

•Cache Memory

oCache/Main Memory Structure

•Cache Memory: Mapping Function

Memory Hierarchy

As one goes down the memory hierarchy, the following occur:

- 1. Decreasing cost per bit
- 2. Increasing capacity
- 3. Increasing access time
- 4. Decreasing frequency of access of the memory by the processor

Key Characteristics of Computer Memory Systems

1. Location

Internal (e.g., processor registers, cache, main memory)

External (e.g., optical disks, magnetic disks, tapes)

- 2. Capacity
 - Number of wordsNumber of bytes

3. Unit of Transfer

Word

Block

- 4. Access Method
 - Sequential
 - Direct
 - Random

- **5.** Performance
 - Access time
 - Cycle time
 - Transfer rate
- **6. Physical Type** Semiconductor
 - Semiconducto
 - □ Magnetic
 - Optical
 - □Magneto-optical
- 7. Physical Characteristics
 Volatile/nonvolatile
 Erasable/nonerasable

The Major Types of Semiconductor Memory

The basic element of a semiconductor memory is the **memory cell**.

- All semiconductor **memory cells** share certain **properties**:
 - They exhibit **two stable states** for binary 1 and 0.
 - They are capable of being **written into** to set the state.
 - They are capable of being **read to** sense the state.

The most common semiconductor memory is referred to as random-access memory (RAM).

Метогу Туре	Category	Erasure	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Volatile
Read-only memory (ROM)	Read-only	Not possible	
Programmable ROM (PROM)	memory		
Erasable PROM (EPROM)		UV light, chip-level	Nonvolatile
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte-level	
Flash memory		Electrically, block-level	

DRAM and **SRAM**

A dynamic RAM (DRAM) is made with cells that store data as charge on capacitors.

- □ It is commonly known as **main memory**, is where programs and data are kept when a program is running.
- □ It is inexpensive, but **must be refreshed** every millisecond to avoid losing its contents.
- Some systems use ECC (error checking and correcting) memory.

A static RAM (SRAM) is used primarily for expensive, high-speed cache memory.

- □ It uses the same logic elements used in the processor.
- □ It does not have to be refreshed.

DDR Characteristics

A synchronous DRAM (SDRAM) exchanges data with the processor synchronized to an external clock signal.

It is running at the full speed of the processor/memory bus without imposing wait states.

A double data-rate DRAM (DDR DRAM) provides several features that dramatically increase the data rate.

- First, the data transfer is synchronized to both the rising and falling edge of the clock.
- Second, DDR uses higher clock rate on the bus to increase the transfer rate.

Third, a buffering scheme is used.

	DDR1	DDR2	DDR3	DDR4
Prefetch buffer (bits)	2	4	8	8
Voltage level (V)	2.5	1.8	1.5	1.2
Front side bus data rates (Mbps)	200-400	400-1066	800-2133	2133-4266

Cache Memory

□ The cache contains a copy of portions of main memory.

When the processor attempts to read a word of memory:

A check is made to determine if the word is in the cache.

After **hit check**, the word is delivered to the processor.

□ If the word is not in the cache (**miss check**), a block of main memory is read into the cache and then the word is delivered to the processor.

There are multiple levels of cache.

□ for instruction and data

Cache/Main Memory Structure

Main memory:

Each address having a unique n bits

The memory size is 2^n addresses.

■For mapping to Cache purposes, it consists of a number of fixed-length blocks of k words each.

The number of memory blocks $M = \frac{2^n}{k}$

The cache:

□It consists of m blocks, called lines.

Each line contains k words plus a tag of a few bits.

The tag identifies which particular block from memory is currently being stored in Cache.

The number of cache blocks $=\frac{Size \ of \ cache}{k}$

Cache/Main Memory Structure

Example:

□A cache memory can hold 64 KB.

- Data are transferred between main memory and the cache in blocks of 4 bytes each.
- Each byte in the main memory is directly addressable by a 24-bit address.
- How many blocks in the cache?
- What is the size of the main memory?
- How many blocks in the main memory for mapping purposes?
- □What is the size of the address bus and data bus?

Solution:

- The number of cache blocks $=\frac{Size \ of \ cache}{k} = 64kB/4 = 16K$
- This means that the cache is organized as $16K = 2^{14}$ lines of 4 bytes each.
- The memory size is $2^{n}=2^{24}=2^{4*}2^{20}=16M$ The number of memory blocks = $\frac{2^{n}}{k}=16M/4=4M$ blocks of 4 bytes each.

size of the address bus = 24
Size of the data bus = 8

Cache Memory: Mapping Function

- There are fewer cache lines than main memory blocks
 - Therefore, a technique is needed for mapping main memory blocks into cache lines.
- **Three mapping techniques** can be used:
 - Direct mapping
 - Associative mapping
 - Set-associative mapping

 \circ j = main memory block number

 \circ m = number of lines in the cache

The mapping is expressed as

Direct Mapping

main memory into only one possible

 \circ i = cache line number

cache line.

 $\Box i = j \% m$

Associative Mapping

Associative Mapping permits each main memory block to be loaded into any line of the cache.

The cache control logic interprets a memory address simply as a **Tag and a Word field.**

Memory address			'
	Tag	Word	

To determine whether a block is in the cache, the cache control logic must **simultaneously examine every line's tag** for a match.

Set-associative Mapping

Set-associative Mapping exhibits the strengths of both the direct and associative approaches.

The cache consists of **number sets**, each of which consists of a **number of lines**.

- The mapping is expressed as m = v * k
 - $\Box i = j \% v$
 - $\Box v =$ number of sets
 - \Box k = number of lines in each set
 - \Box i = cache set number
 - \Box j = main memory block number
 - \Box m = number of lines in the cache
 - Memory address

Tag	Set	Word
-----	-----	------

