<u>Distributed Forces</u>

- The body will be in equilibrium under the action of the tension in the cord and the resultant W of the gravitational forces acting on all particles of the body. This resultant is clearly *collinear* with the cord.
- For all practical purposes these lines of action will be concurrent at a single point G, which is called the *center of gravity* of the body.

Determining the Center of Gravity

Apply the principle of moments to the parallel system of gravitational forces. The moment of the resultant gravitational force W about any axis equals the sum of the moments about the same axis of the gravitational forces dW acting on all particles treated as infinitesimal elements of the body. The resultant of the gravitational forces acting on all elements is the weight of the body and is given by the sum $W = \int dW$.

The moment about y-axis of the elemental weight=xdW

The sum of these moments for all elements of the body about y-axis = $\int x dW$. Moment of the sum = $\bar{x}W$

Moment of the sum must equal the sum of the moments, $\bar{x}W$

 $= \underbrace{\int x dW}_{f \text{ sum}} \rightarrow$

$$\bar{x} = \frac{\int x dW}{W}$$
Similar expressions for the other two coordinates, \bar{y} , \bar{z} of the center of gravity G:
 $\bar{x} = \int x dW$

$$\bar{x} = \frac{\int x dW}{W} \\ \bar{y} = \frac{\int y dW}{W} \\ \bar{z} = \frac{\int z dW}{W}$$
 center of gravity coordinate

With the substitution of W= mg and dW= g dm, the expressions for the coordinates of the center of gravity become

$$\bar{x} = \frac{\int x \ g \ dm}{m \ g} \qquad \bar{y} = \frac{\int y \ g \ dm}{m \ g} \qquad \bar{z} = \frac{\int z \ g \ g}{m \ g}$$

$$\bar{x} = \frac{\int x \ dm}{m}$$

$$\bar{y} = \frac{\int y \ dm}{m}$$

$$\bar{z} = \frac{\int z \ dm}{m}$$

$$center \ of \ mass \ coordinate$$

$$\bar{z} = \frac{\int z \ dm}{m}$$

Where, W: weight, m: mass, g: gravitational acceleration If ρ , the density of a body is its mass per unit volume (V), then dm = ρ dV If ρ is not constant throughout the body

$$\bar{x} = \frac{\int x \rho dV}{\int \rho dV}$$

$$\bar{y} = \frac{\int y \rho dV}{\int \rho dV}$$

$$\bar{z} = \frac{\int z \rho dV}{\int \rho dV}$$

Centroids of Lines, Areas, and Volumes

When the density of a body is uniform throughout, it will be a constant, then center of mass concise with geometrical center and termed *centroid*.

Centroid of Lines

L: length, A: cross-sectional area, ρ : density

If A and ρ are constant over the length of the rod, the coordinates of the center of mass also become the coordinates of the centroid C of the line segment

$$\bar{x} = \frac{\int x \, dL}{L}$$

$$\bar{y} = \frac{\int y \, dL}{L}$$

$$\bar{z} = \frac{\int z \, dL}{L}$$
Centroid

In general, the centroid C will not lie on the line. If the rod lies on a single plane, such as the x-y plane, only two coordinates need to be calculated.

Remember,

$${}^{b}_{a}L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \cdot dx, \text{ if } y=f(x)$$
$${}^{d}_{c}L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \cdot dy, \text{ if } x=g(y)$$

SAMPLE PROBLEM 5/1

Centroid of a *circular arc*. Locate the centroid of a circular arc as shown in the figure.

Solution.

Choosing the axis of symmetry as the x-axis makes $\overline{y} = 0$. A differential

element of arc has the length $dL=rd\theta$ expressed in polar coordinates, and the x-coordinate of the element is $r \cos\theta$

$$L=2\alpha r$$

$$\bar{x} = \frac{\int x \, dL}{L} \rightarrow = \frac{\int_{-\alpha}^{\alpha} (r \cos \theta) \, (r d\theta)}{2\alpha r} = \frac{r^2 [\sin \theta]_{-\alpha}^{\alpha}}{2\alpha r} = \frac{r}{2\alpha} (\sin \alpha - \sin(-\alpha))$$
$$\bar{x} = \frac{r \sin \alpha}{\alpha}$$

For a semicircular arc $2\alpha = \pi$, which gives $\bar{y} = \frac{r \sin \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{2r}{\pi}$

For a quarter-circular arc $2\alpha = \pi/2$, which gives $\bar{x} = \bar{y} = \left(\frac{r \sin\frac{\pi}{4}}{\frac{\pi}{4}}\right) \cos\frac{\pi}{4} = \left(\frac{r \frac{1}{\sqrt{2}}}{\frac{\pi}{4}}\right) \frac{1}{\sqrt{2}} = \frac{2r}{\pi}$

Prob. 5/38

Centroids of Areas

When a body of density ρ has a small but constant thickness t, we can model it as a surface area A. The mass of an element becomes dm = ρ t dA. Again, if ρ and t are constant over the entire area, the coordinates of the center of mass of the body also become the coordinates of the centroid C of the surface area, and the coordinates may be written

$$\bar{x} = \frac{\overbrace{\int x \, dA}}{A}$$

$$\bar{y} = \frac{\int y \, dA}{A}$$

$$\bar{z} = \frac{\int z \, dA}{A}$$
Centroid

100 mm

Eng. Mechanics-Statics-1st stage Choice of Element for Integration

 $\bar{x} = \frac{\int x \, dA}{A} = \frac{\int_{x1}^{x2} x \, (y1 - y2) dx}{A}$ $A = \int_{x1}^{x2} (y1 - y2) dx$ $\bar{y} = \frac{\int y \, dA}{A} = \frac{\int_{x1}^{x2} y (y1 - y2) dx}{A}$

OR

SAMPLE PROBLEM 5/2

Centroid of a triangular area. Determine the distance \bar{h} from the base of a triangle of altitude h to the centroid of its area.

Solution:

By similar triangles $x/(h-y)=b/h \rightarrow x=(b/h)(h-y)$

$$\bar{h} = \bar{y} = \frac{\int y \, dA}{A}$$

$$M_x = \int y \, dA = \int_0^h y \, (xdy) = \int_0^h y \left(\frac{b}{h}\right) (h - y) \, dy$$

$$= \frac{b}{h} \int_0^h (hy - y^2) \, dy = \frac{b}{h} \left[\frac{hy^2}{2} - \frac{y^3}{3}\right]_0^h = \frac{bh^2}{6}$$

$$A = \int_0^h x \, dy = \int_0^h \left(\frac{b}{h}\right) (h - y) \, dy = \frac{bh}{2}$$

$$\bar{h} = \frac{\int y \, dA}{A} = \frac{\frac{bh^2}{6}}{\frac{bh}{2}} = \frac{h}{3}$$

SAMPLE PROBLEM 5/3

Centroid of the area of a *circular sector*. Locate the centroid of the area of a circular sector with respect to its vertex.

 $dA=2r_0\alpha dr_0.$

$$M_{y} = \int x \, dA = \int_{0}^{r} \left(\frac{r_{0} \sin \alpha}{\alpha}\right) \left(2r_{0} \alpha dr_{0}\right) = 2 \sin \alpha \int_{0}^{r} r_{0}^{2} dr_{0}$$
$$= 2 \sin \alpha \left[\frac{r_{0}^{3}}{3}\right]_{0}^{r} = \frac{2 \sin \alpha r^{3}}{3}$$
$$A = r^{2} \pi \frac{2\alpha}{2\pi} = r^{2} \alpha$$

$$\bar{x} = \frac{\int x \, dA}{A} = \frac{\frac{2\sin\alpha r^3}{3}}{r^2\alpha} = \frac{2r\sin\alpha}{3\alpha}$$

Solution II. Triangle of differential area

$$M_{y} = \int x \, dA = \int_{-\alpha}^{\alpha} \left(\frac{2}{3}r\cos\theta\right) \left(\frac{rd\theta}{2}r\right) = \frac{r^{3}}{3} \int_{-\alpha}^{\alpha} \cos\theta \, d\theta =$$
$$= \frac{r^{3}}{3} [\sin\theta]_{-\alpha}^{\alpha} = \frac{r^{3}}{3} [\sin\alpha - \sin-\alpha] = \frac{2}{3}r^{3}\sin\alpha$$

$$A = r^2 \pi \frac{1}{2\pi} = r^2 \alpha$$
$$\bar{x} = \frac{\int x \, dA}{A} = \frac{\frac{2 \sin \alpha r^3}{3}}{r^2 \alpha} = \frac{2r \sin \alpha}{3\alpha}$$

 $x_c = \frac{2}{3}r\cos\theta$ $d\theta$ $d\theta$ α θ x

 $r_0 \sin \alpha$

For a *semicircular area* $2\alpha = \pi$, which gives $\bar{x} = \frac{2r \sin \alpha}{3\alpha} = \frac{2r \sin \frac{\pi}{2}}{3\frac{\pi}{2}} = \frac{4r}{3\pi}$ For a *quarter-circular area* $2\alpha = \pi/2$, which gives $\bar{x} = \bar{y} = \frac{4r}{3\pi}$

SAMPLE PROBLEM 5/4

Locate the centroid of the area under the curve $x=ky^3$ from x=0 to x=a. Solution I. A vertical element

$$x = ky^{3} \to a = kb^{3} \to k = \frac{a}{b^{3}}$$

$$M_{y} = \int x \, dA = \int_{0}^{\alpha} x \, (ydx)$$

$$= \int_{0}^{\alpha} x \, \left(\sqrt[3]{\frac{x}{k}} \, dx\right) = \frac{1}{k^{\frac{1}{3}}} \int_{0}^{\alpha} x^{\frac{4}{3}} \, dx = \frac{1}{(\frac{a}{b^{3}})^{\frac{1}{3}}} \left[\frac{x^{\frac{7}{3}}}{\frac{7}{3}}\right]_{0}^{a} = \frac{3}{7} a^{2}b$$

 $4r/3\pi$

C

$$\begin{split} \overline{A} &= \int_0^a y dx = \int_0^a \sqrt[3]{\frac{x}{k}} dx = \frac{1}{k^{\frac{1}{3}}} \int_0^a x^{\frac{1}{3}} dx = \frac{1}{(\frac{a}{b^3})^{\frac{1}{3}}} \left[\frac{x^{\frac{4}{3}}}{\frac{4}{3}}\right]_0^a = \frac{3}{4} ab \\ \overline{x} &= \frac{\int x \, dA}{A} = \frac{\frac{7}{7} a^2 b}{\frac{3}{4} ab} = \frac{4}{7} a \\ M_x &= \int \frac{y}{2} \, dA = \int_0^a \frac{y}{2} \, (y dx) = \int_0^a \frac{y^2}{2} \, dx = \frac{1}{2} \int_0^a [(\frac{x}{k})^{\frac{1}{3}}]^2 dx \\ &= \frac{1}{2(k)^{\frac{2}{3}}} \int_0^a x^{\frac{2}{3}} dx = \frac{1}{2(\frac{a}{b^3})^{\frac{2}{3}}} \left[\frac{x^{\frac{5}{3}}}{\frac{5}{3}}\right]_0^a = \frac{3}{10} ab^2 \\ \overline{y} &= \frac{\int \frac{y}{2} \, dA}{A} = \frac{\frac{3}{10} ab^2}{\frac{3}{4} ab} = \frac{2}{5} b \end{split}$$

Solution II. The horizontal element of area

$$M_{y} = \int x \, dA = \int_{0}^{b} \left(\frac{a+x}{2}\right) \left[(a-x)dy\right] = \int_{0}^{b} \left(\frac{a+ky^{3}}{2}\right) \left[(a-ky^{3})dy\right] = \frac{3}{7}a^{2}b$$

$$A = \int_{0}^{b} (a-x)dy = \int_{0}^{b} (a-ky^{3})dy = \frac{3}{4}ab$$

$$\bar{x} = \frac{\int x \, dA}{A} = \frac{\frac{3}{7}a^{2}b}{\frac{3}{4}ab} = \frac{4}{7}a$$

$$M_{x} = \int y \, dA = \int_{0}^{b} y \left[(a-x)dy\right] = \int_{0}^{b} y \left[(a-ky^{3})dy\right] = \frac{3}{10}ab^{2}$$

$$\bar{y} = \frac{\int \frac{y}{2}dA}{A} = \frac{\frac{3}{10}ab^{2}}{\frac{3}{4}ab} = \frac{2}{5}b$$

Prob.5/18

Determine the coordinates of the centroid of the shaded area. Solution:

$$y_{1} = k x^{2} \rightarrow b = k a^{2} \rightarrow k = \frac{b}{a^{2}}$$

$$y_{1} = \frac{b}{a^{2}} x^{2}$$

$$m = \frac{\Delta y}{\Delta x} = \frac{b - 0.5b}{a - 0} = \frac{b}{2a}$$

$$m = \frac{b}{2a} = \frac{y - 0.5b}{x - 0} \rightarrow y_{2} = \frac{b}{2} (\frac{x}{a} + 1)$$

$$A = \int_{0}^{a} (y^{2} - y^{1}) dx = \int_{0}^{a} \left(\left[\frac{b}{2} \left(\frac{x}{a} + 1 \right) \right] - \left[\frac{b}{a^{2}} x^{2} \right] \right) dx$$

$$= \left[\left[\frac{b}{2} \left(\frac{x^{2}}{2a} + x \right) \right] - \left[\frac{b}{a^{2}} \frac{x^{3}}{3} \right] \right]_{0}^{a} = \frac{5}{12} ba$$

$$M_{y} = \int x \, dA = \int_{0}^{a} x(y^{2} - y^{1}) dx = \int_{0}^{a} x\left(\left[\frac{b}{2} \left(\frac{x}{a} + 1 \right) \right] - \left[\frac{b}{a^{2}} x^{2} \right] \right) dx$$

$$= \int_{0}^{a} \left(\left[\frac{b}{2} \left(\frac{x^{2}}{a} + x \right) \right] - \left[\frac{b}{a^{2}} x^{3} \right] \right) dx = \left[\left[\frac{b}{2} \left(\frac{x^{3}}{3a} + \frac{x^{2}}{2} \right) \right] - \left[\frac{b}{a^{2}} \frac{x^{4}}{4} \right] \right]_{0}^{a} = \frac{ba^{2}}{6}$$

Eng. Mechanics-Statics- 1st stage ba^2

~

$$\bar{x} = \frac{\int x \, dA}{A} = \frac{\frac{6}{5}}{\frac{5}{12}ba} = \frac{2}{5}a$$

$$M_x = \int y \, dA = \int_0^a \left(\frac{y1+y2}{2}\right)(y2-y1)dx = \frac{1}{2}\int_0^a [y_2^2 - y_1^2]dx$$

$$= \frac{1}{2}\int_0^a \left[\left(\frac{b}{2}\left(\frac{x}{a}+1\right)\right)^2 - \left(\frac{b}{a^2}x^2\right)^2\right]dx = \frac{23ab^2}{120}$$

$$\bar{y} = \frac{\int y \, dA}{A} = \frac{\frac{23ab^2}{120}}{\frac{5}{12}ba} = \frac{23}{50}b$$

Prob. 5/31

The figure represents a flat piece of sheet metal symmetrical about axis A-A and having a parabolic upper boundary. Choose your own coordinates and calculate the distance from the base to the center of gravity of the piece. Solution.

Solution:

$$y = a_{0} + a_{1}x + a_{2}x^{2}$$

$$\dot{y} = a_{1} + 2a_{2}x$$

$$\dot{y}(0) = 0 = a_{1} + 2a_{2} * 0 \rightarrow a_{1} = 0$$

$$y(0) = 20 = a_{0} + a_{2} * 0 \rightarrow a_{0} = 20$$

$$y(30) = 50 = 20 + a_{2} * 30^{2} \rightarrow a_{2} = \frac{1}{30}$$

$$y = 20 + \frac{1}{30} * x^{2}$$

$$A = \int_{-30}^{30} y dx = 2 \int_{0}^{30} y dx = 2 \int_{0}^{30} \left(20 + \frac{x^{2}}{30}\right) dx = 1800 \text{ mm}^{2}$$

$$M_{x} = \int y dA = \int \frac{y}{2} \frac{dA}{y dx} = 2 \int_{0}^{30} \frac{y^{2}}{2} dx = \int_{0}^{30} \left(20 + \frac{x^{2}}{30}\right)^{2} dx = 29400 \text{ mm}^{3}$$

$$\bar{y} = \frac{\int y dA}{A} = \frac{29400}{1800} = 16.33 \text{ mm}$$

ł 7

A I

Ν

Prob.5/29

Determine the y-coordinate of the centroid of the shaded area.

Solution: а

$$A = \int_{\frac{a}{2}}^{a} \frac{2\pi r_0}{4} dr_0 = \frac{\pi}{2} \left[\frac{r_0^2}{2} \right]_{\frac{a}{2}}^{a} = \frac{3}{16} \pi a^2$$

Eng. Mechanics-Statics- 1st stage

Lecturer: Dr. Bashar Abid Hamza

$$M_{x} = \int y \, dA = \int \frac{\overline{r_{0} \sin \alpha}}{\alpha} \frac{2\pi r_{0}}{4} \, dr_{0} = \int_{\frac{a}{2}}^{a} \frac{r_{0} \sin \frac{\pi}{4}}{\frac{\pi}{4}} * \frac{2\pi r_{0}}{4} \, dr_{0}$$
$$= 2 \int_{\frac{a}{2}}^{a} \frac{1}{\sqrt{2}} * r_{0}^{2} \, dr_{0} = \frac{7}{12\sqrt{2}} a^{3}$$
$$\overline{y} = \frac{\int y \, dA}{A} = \frac{\frac{7}{12\sqrt{2}}a^{3}}{\frac{3}{16}\pi a^{2}} = \frac{289}{9\sqrt{2}} \frac{a}{\pi}$$

dΛ

Prob. 5/36

The thickness of the triangular plate varies linearly with y from a value t_0 along its base y=0 to 2 t_0 at y=h. Determine the y-coordinate of the center of *mass* of the plate. Solution:

$$\bar{y} = \frac{\int y \, dm}{m} = \frac{\int y \, \rho dV}{\int \rho dV} = \frac{\int y \, \rho t dA}{\int \rho t dA}$$

$$m = \int \rho t dA = \rho \int_{0}^{h} \left[t_0 \left(1 + \frac{y}{h} \right) \right] (b - x) dy = t_0 \rho \int_{0}^{h} \left(1 + \frac{y}{h} \right) \left(b - \frac{b}{h} y \right) dy = \frac{2}{3} t_0 \rho bh$$

$$M_x = \int y \, \rho t dA = \rho \int_{0}^{h} y \left[t_0 \left(1 + \frac{y}{h} \right) \right] (b - x) dy = t_0 \rho \int_{0}^{h} y \left(1 + \frac{y}{h} \right) \left(b - \frac{b}{h} y \right) dy = \frac{t_0 \rho b h^2}{4}$$

$$\bar{y} = \frac{\int y \, \rho t dA}{\int \rho t dA} = \frac{\frac{t_0 \rho b h^2}{4}}{\frac{2}{3} t_0 \rho b h} = 0.375 \, h \text{ Compare with } \bar{y} = \frac{h}{3} \text{ for uniform thickness}$$

Prob.5/42

The thickness of the semicircular plate varies linearly with y from a value $2t_0$ along its base y=0 to t_0 at y=a. Determine the y-coordinate of the *mass* center of the plate.

Solution:

$$\frac{t_1/2}{a - r_0 \sin \theta} = \frac{t_0/2}{a} \to t_1 = t_0 (1 - \frac{r_0}{a} \sin \theta)$$
$$t(r, \theta) = t_0 + t_1 = t_0 + \left[t_0 (1 - \frac{r_0}{a} \sin \theta) \right]$$
$$= t_0 (2 - \frac{r_0}{a} \sin \theta)$$

$$\begin{split} \mathbf{m} &= \int \rho t dA = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \rho \left[\overline{t_{0}(2 - \frac{r_{0}}{a} \sin \theta)} \right] \overline{r_{0} d\theta} dr_{0} = \rho t_{0} \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} (2r_{0} - \frac{r_{0}^{2}}{a} \sin \theta) d\theta dr_{0} \\ &= \rho t_{0} \int_{0}^{\frac{\pi}{2}} \left[\frac{2r_{0}^{2}}{2} - \frac{r_{0}^{3}}{3a} \sin \theta \right]_{0}^{a} d\theta = \rho t_{0} a^{2} \int_{0}^{\frac{\pi}{2}} \left(1 - \frac{\sin \theta}{3} \right) d\theta = \rho t_{0} a^{2} \left[\theta + \frac{\cos \theta}{3} \right]_{0}^{\frac{\pi}{2}} \\ &= \rho t_{0} a^{2} \left(\frac{\pi}{2} - \frac{1}{3} \right) * \underbrace{2}_{two \ quarter - circular \ area} = 2.475 \ \rho t_{0} a^{2} \\ M_{x} &= \int \mathbf{y} \ \rho t dA = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \left[\frac{y}{r_{0}} \sin \theta \right] \rho \left[t_{0} \left(2 - \frac{r_{0}}{a} \sin \theta \right) \right] \overline{r_{0}} d\theta dr_{0} \\ &= \rho t_{0} \int_{0}^{\frac{\pi}{2}} \left[\frac{2r_{0}^{3}}{3} \sin \theta - \frac{r_{0}^{4}}{a} \sin^{2} \theta \right]_{0}^{a} d\theta = \rho t_{0} \int_{0}^{\frac{\pi}{2}} \left(\frac{2a^{3}}{3} \sin \theta - \frac{a^{3}}{4} \frac{\frac{1 - \cos 2\theta}{\sin^{2}}}{\sin^{2} \theta} \right) d\theta \\ &= \rho t_{0} \int_{0}^{\frac{\pi}{2}} \left[\frac{2a^{3}}{3} \sin \theta - \frac{a^{3}}{4} \left(\frac{1 - \cos 2\theta}{2} \right) \right] d\theta \\ &= \rho t_{0} \int_{0}^{\frac{\pi}{2}} \left[\frac{2a^{3}}{3} \sin \theta - \frac{a^{3}}{4} \left(\frac{1 - \cos 2\theta}{2} \right) \right] d\theta \\ &= \rho t_{0} a^{3} \left[-\frac{2}{3} \cos \theta - \frac{1}{8} \left(\theta - \frac{\sin 2\theta}{2} \right) \right]_{0}^{\frac{\pi}{2}} = \rho t_{0} a^{3} \left(-\frac{\pi}{16} + \frac{2}{8} \right) * 2 \\ &= 0.9406 \ \rho t_{0} a^{3} \\ \overline{\mathbf{y}} = \frac{\left[\frac{\mathbf{y} \ \rho t dA }{f_{0} \ t_{0} \ dx} \right] = 0.38 \ a \ \text{Compare with } \overline{\mathbf{y}} = \frac{4r}{3\pi} = 0.424 \ a \ \text{for uniform thickness} \end{split}$$

$\frac{\text{Centroid of Composite Figures}}{\bar{x} = \frac{\sum A * x}{\sum A}}$

$$\bar{y} = \frac{\sum A}{\sum A * y}$$

SAMPLE PROBLEM 5/6

Locate the centroid of the shaded area.

Part	A(mm ²)	x(mm)	y(mm)	A*x	A*y
1 rect.	120*100=12000	120/2=60	100/2=50	12000*6=720000	12000*50=600000
2 tri.	(60*100)/2=3000	120+(60/3)=140	100/3=33.3	420000	100000
3 cir	$(30^{2*}\pi)/2=-144$	30+30=60	$\frac{\frac{2}{3}\frac{r\sin\alpha}{\alpha}}{\frac{\pi}{2}} = \frac{2}{3}\frac{30\sin\frac{\pi}{2}}{\frac{\pi}{2}} = 12.73$	-84800	18000
4 rect	20*40=-800	30+30+30+20+(20/2)=120	20+(40/2)=40	-96000	-32000
Total	12790			959000	650000

Eng. Mechanics-Statics- 1st stage

$$\bar{x} = \frac{\sum A * x}{\sum A} = \frac{959000}{12790} = 75 mm$$
$$\bar{y} = \frac{\sum A * y}{\sum A} = \frac{650000}{12790} = 50.8 mm$$

Prob.5/50

Determine the y-coordinate of the centroid of the shaded area.

	Part	A(mm ²)	x(mm)	y(mm)	A*x	A*y
	1 tri.	h , h^2	0	2	0	2 h^3
		$\frac{1}{\tan 60} * h = \frac{1}{\tan 60}$		$\overline{3}^n$		3 tan 60
	2 circular	$a^2\pi\pi$ $a^2\pi$	0	$2 r \sin \alpha $ $2 a \sin \frac{\pi}{6} $ $2 a \sin \frac{\pi}{6}$	0	a ³
	sector	$\frac{1}{2\pi}\frac{1}{3} = -\frac{1}{6}$		$\frac{1}{3}\frac{\alpha}{\alpha} - \frac{1}{3}\frac{\pi}{\frac{\pi}{6}} - \frac{1}{\pi}u$		3
	Total					
<u></u> <i>y</i> =	$=\frac{\sum A * y}{\sum A} =$	$=\frac{\frac{2}{3}\frac{h^3}{\tan 60}-\frac{a^3}{3}}{\frac{h^2}{\tan 60}-\frac{a^2\pi}{6}}=\frac{4h^3-2}{6h^2-\sqrt{2}}$	$\frac{\sqrt{3} a^3}{\sqrt{3}\pi a^2}$			

Prob.5/75

Determine the y-coordinate of the centroid of the shaded area.

Part	A(mm ²)	x(mm)	y(mm)	A*x	A*y
1 semicircular	$\frac{70^2\pi}{2} = 7697$	0	$\frac{4r}{3\pi} = \frac{4*70}{3\pi} = 29.71$	0	228670
2 circular sector	$\frac{50^2\pi}{360} * 132.84 = -2898$	0	$\frac{\frac{2}{3}r\sin\alpha}{\frac{\pi}{\alpha}} = \frac{2}{3}\frac{50\sin 66.42}{1.159} = 26.35$	0	-76365
3 Triangle	45.82*20=916.4	0	$\frac{2}{3}$ *20=13.33	0	12218.7
Total	5715				164523

Solution:

$$\theta = \cos^{-1} \frac{20}{50} = 66.42^{\circ}$$
$$\bar{y} = \frac{\sum A * y}{\sum A} = \frac{164523}{5715} = 28.8 \text{ mm}$$

Eng. Mechanics-Statics- 1st stage

Lecturer: Dr. Bashar Abid Hamza

Problem 5/57: Determine the distance from the bottom of the base plate to the centroid of the built-up structural section shown.

Part	A(mm ²)	X	y(mm)	A*x	A*y
		(mm)			
1 Rectangle	160 * 10 = 1600	0	$\frac{10}{2} = 5$	0	8000
2 Rectangle	(160 - 80) * 10 = 800	0	$10 + \frac{10}{2} = 15$	0	12000
3 Rectangle	((50-10)*10)*2 = 800	0	$10 + 10 + \frac{40}{2} = 40$	0	32000
4 Rectangle	(120 * 10) * 2 = 2400		$10 + \frac{120}{2} = 70$		168000
Total	5600				220000

$$\bar{y} = \frac{\sum A * y}{\sum A} = \frac{220000}{5600} = 39.3mm$$

Problem 5/52 :Calculate the y-coordinate of the centroid of the shaded area.

Part	A(mm ²)	x(mm)	y(mm)	A*x	A*y
1 Rectangle	20 * 30 = 600	0	$\frac{20}{2} = 10$	0	6000
2 circular sector	$13^2 * \frac{\pi}{3} = -177$	0	$3 + \frac{2}{3} \frac{r \sin \alpha}{\alpha} = 3 + \frac{2}{3} * \frac{13 \sin 60}{\pi/3}$ $= 10.17$	0	-1800
Total	423				4200

$$\bar{y} = \frac{\sum A * y}{\sum A} = \frac{4200}{423} = 9.mm$$

Problem: Locate the centroid of the shaded area shown in Fig.

Solution:

Part	A(mm ²)	x(mm)	y(mm)	A*x	A*y
1 Rec.	150*75=11250	0	100+(75/2)=137.5	0	421875
2 Tri.	(75*75)/2=2812.5	(150/2)+(75/3)=100	100+(75/3)=125	281250	351562.5
3 Tri.	(75*75)/2=2812.5	(150/2)+(75/3)=-100	100+(75/3)=125	-281250	351562.5
4 Rec.	300*100=30000	0	100/2=50	0	1500000
5 Tri,	(90*90)/2=- 4050	90/3=30	90/3=30	-121500	-121500
6	$(\pi/4)*90^2 = -6361.7$	$\frac{4r}{r} = \frac{4*90}{-38.2}$	$\frac{4r}{r} = \frac{4*90}{38.2}$	243017	-243017
Quarter		3π 3π	3π 3π		
circular					
Total	36463.3			121517	2260483

$$\bar{x} = \frac{\sum A * x}{\sum A} = \frac{121517}{36463.3} = 3.33 \ mm$$
$$\bar{y} = \frac{\sum A * y}{\sum A} = \frac{2260483}{36463.3} = 62 \ mm$$

TABLE D/3 PROPERTIES OF PLANE FIGURES

FIGURE	CENTROID	AREA MOMENTS OF INERTIA		
Arc Segment $\overbrace{\alpha}^{r} \xrightarrow{C} \xrightarrow{C}$	$\overline{r} = \frac{r \sin \alpha}{\alpha}$	_		
Quarter and Semicircular Arcs $C \leftarrow C \xrightarrow{r}$	$\overline{y} = \frac{2r}{\pi}$	_		
Circular Area C		$I_x = I_y = \frac{\pi r^4}{4}$ $I_z = \frac{\pi r^4}{2}$		
Semicircular Area $r \downarrow C$	$\overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{8}$ $\overline{I}_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $I_z = \frac{\pi r^4}{4}$		
Quarter-Circular Area r r \overline{x} C \overline{y} $-x$	$\overline{x} = \overline{y} = \frac{4r}{3\pi}$	$\begin{split} I_x &= I_y = \frac{\pi r^4}{16} \\ \overline{I}_x &= \overline{I}_y = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) r^4 \\ I_z &= \frac{\pi r^4}{8} \end{split}$		
Area of Circular Sector $x \xrightarrow{y}x$	$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$	$I_x = \frac{r^4}{4} (\alpha - \frac{1}{2} \sin 2\alpha)$ $I_y = \frac{r^4}{4} (\alpha + \frac{1}{2} \sin 2\alpha)$ $I_z = \frac{1}{2} r^4 \alpha$		

TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Rectangular Area $ \begin{array}{c} y_{0} \\ & \downarrow \\ & \downarrow$		$I_x = \frac{bh^3}{3}$ $\overline{I}_x = \frac{bh^3}{12}$ $\overline{I}_z = \frac{bh}{12}(b^2 + h^2)$
Triangular Area $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\overline{x} = \frac{a+b}{3}$ $\overline{y} = \frac{h}{3}$	$I_x = \frac{bh^3}{12}$ $\overline{I}_x = \frac{bh^3}{36}$ $I_{x_1} = \frac{bh^3}{4}$
Area of Elliptical Quadrant y b \overline{x} c \overline{y} -x	$\overline{x} = \frac{4a}{3\pi}$ $\overline{y} = \frac{4b}{3\pi}$	$\begin{split} I_x &= \frac{\pi a b^3}{16}, \ \ \overline{I}_x = \ \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a b^3 \\ I_y &= \frac{\pi a^3 b}{16}, \ \ \overline{I}_y = \ \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a^3 b \\ I_z &= \frac{\pi a b}{16} (a^2 + b^2) \end{split}$
Subparabolic Area $y y = kx^{2} = \frac{b}{a^{2}}x^{2}$ Area $A = \frac{ab}{3}$ $x c$ $a -x$	$\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3b}{10}$	$I_x = \frac{ab^3}{21}$ $I_y = \frac{a^3b}{5}$ $I_z = ab\left(\frac{a^3}{5} + \frac{b^2}{21}\right)$
Parabolic Area $y = kx^{2} = \frac{b}{a^{2}}x^{2}$ Area $A = \frac{2ab}{3}$ b \overline{x} \overline{y} \overline{y} \overline{y} \overline{y} \overline{y} \overline{y} \overline{y} \overline{y}	$\overline{x} = \frac{3a}{8}$ $\overline{y} = \frac{3b}{5}$	$I_x = \frac{2ab^3}{7}$ $I_y = \frac{2a^3b}{15}$ $I_z = 2ab\left(\frac{a^2}{15} + \frac{b^2}{7}\right)$