Applications of Partial Derivatives

1. Jacobian and Hessian Matrices:

The **Jacobian Matrix** is a matrix composed of the first-order partial derivatives of a multivariable function f(x, y) = (u(x, y), v(x, y)). The formula for the Jacobian matrix is the following:

$$\mathbf{J} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

The determinant of Jacobian matrix is denoted by $|J| = u_x v_y - v_x u_y$

Example 1: Let $u = x^2 - y^2$, v = 2xy. Find Jacobian matrix and its determinant.

$$u_x = 2x, u_y = -2y, v_x = 2y \text{ and } v_y = 2x$$
$$J = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$
$$|J| = 2x \times 2x - 2y \times (-2y) = 4x^2 + 4y^2$$

The Jacobian matrix of the function with 3 variables f(x, y, z) = (u, v, w)

$$\mathbf{J} = \begin{bmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix}$$

Example 2: Let $u = x^2 y$, $v = y^2 z$, $w = xz^2$. Find Jacobian matrix and its determinant at the point (1,1,1).

$$J = \begin{bmatrix} 2xy & x^2 & 0 \\ 0 & 2yz & y^2 \\ z^2 & 0 & 2xz \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
$$|J| = \begin{vmatrix} 2 & 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 & 2 \\ 1 & 0 & 2 & 1 & 0 \end{vmatrix}$$
$$= 2 \times 2 \times 2 + 1 \times 1 \times 1 + 0 \times 0 \times 0 - (1 \times 2 \times 0 + 0 \times 1 \times 2 + 2 \times 0 \times 1)$$
$$= 9$$

جامعة بابل – كلية العلوم – قسم الفيزياء – محاضرات الرياضيات للفصل الثاني - المرحلة الاولى العام العام الدراسي 2024 - 2025 - (2) - أ.م.د فؤاد حمزة عبد

The second-order partial derivatives of the function f(x, y) can be arranged as a matrix called the **Hessian Matrix**, denoted by H(f):

$$H(f) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

The determinant of Hessian matrix is denoted by $|H(f)| = f_{xx}f_{yy} - f_{xy}f_{yx}$

Example 3: Find Hessian matrix and its determinant at the point (1,0).

for the function
$$f(x, y) = (x^2 + y^2)^2/2$$

 $f_x = 2x(x^2 + y^2) = 2x^3 + 2xy^2$
 $f_{xx} = 6x^2 + 2y^2$
 $f_{xx}(1,0) = 6$
 $f_y = 2y(x^2 + y^2) = 2yx^2 + 2y^3$
 $f_{yy} = 2x^2 + 6y^2$
 $f_{yy}(1,0) = 2$
 $f_{xy} = f_{yx} = 2y \times 2x = 4xy$
 $f_{xy}(1,0) = 0$
 $H(f) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$
 $|H(f)| = \begin{vmatrix} 6 & 0 \\ 0 & 2 \end{vmatrix} = 12$

The Hessian matrix of the function with 3 variables f(x, y, z) is the matrix:

$$H(f) = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

Example 4: Let $f(x, y, z) = x^2 e^y + xz^2$. Find Hessian matrix and its determinant at the point (1,0,2).

$f_x = 2xe^y + z^2$	⊳	$f_{xx} = 2e^y$	⇒	$f_{xx}(1,0,2) = 2$
$f_x = 2xe^y + z^2$	₽	$f_{xy} = 2xe^y$	⊳	$f_{xy}(1,0,2) = 2$
$f_x = 2xe^y + z^2$	⊳	$f_{xz} = 2z$	⊳	$f_{xz}(1,0,2) = 4$

جامعة بابل – كلية العلوم – قسم الفيزياء – محاضرات الرياضيات للفصل الثاني - المرحلة الاولى العام العام الدراسي 2024 - 2025 - (2) - أ.م.د فؤاد حمزة عبد

 $\Rightarrow f_{yx} = 2xe^y$ $f_y = x^2 e^y$ $\Rightarrow f_{vx}(1,0,2) = 2$ $\Rightarrow f_{yy} = x^2 e^y$ $f_{y} = x^2 e^{y}$ $\Rightarrow f_{\nu\nu}(1,0,2) = 1$ $f_y = x^2 e^y$ $\Rightarrow f_{yz} = 0$ $\Rightarrow f_{vz}(1,0,2) = 0$ $\Rightarrow \quad f_{zx}(1,0,2) = 4$ $\Rightarrow f_{zx} = 2z$ $f_z = 2xz$ $\Rightarrow f_{zy} = 0$ $f_z = 2xz$ $\Rightarrow f_{zy}(1,0,2) = 0$ $f_z = 2xz$ \Rightarrow $f_{zz} = 2x$ $\Rightarrow f_{zz}(1,0,2) = 2$ $H(f) = \begin{bmatrix} 2 & 2 & 4 \\ 2 & 1 & 0 \\ 4 & 0 & 2 \end{bmatrix}$ $|H(f)| = \begin{vmatrix} 2 & 2 & 4 & 2 & 2 \\ 2 & 1 & 0 & 2 & 1 \\ 4 & 0 & 2 & 4 & 0 \end{vmatrix}$ $= 2 \times 1 \times 2 + 2 \times 0 \times 4 + 4 \times 2 \times 0 - (4 \times 1 \times 4 + 0 \times 0 \times 2 + 2 \times 2 \times 2)$ = 4 - (16 - 8) = -4

2. Gradient and Laplace Operator of a Scalar Field

A scalar field is a function that takes a point in space and assign a number to it, for example $f(x, y, z) = x^2 + \cos 2y + \ln(2z + 1)$ $f(1, \pi/6, 0) = 1 + \cos(\pi/3) + \ln 1 = 1 + (1/2) + 0 = 3/2$

The Gradient of a scalar field f(x, y, z) is a vector field denoted by ∇f and it is defined as: $\nabla f = f_x i + f_y j + f_z k$ **Example 5:** Find ∇f of $f(x, y, z) = 2x^2 \sin y - xy \tan z$ $f_x = 4x \sin y - y \tan z$, $f_y = 2x^2 \cos y - x \tan z$ and $f_z = -xy \sec^2 z$ $\nabla f = (4x \sin y - y \tan z) i + (2x^2 \cos y - x \tan z) j - xy \sec^2 z k$

Laplace Operator: The differential operator ∇^2 is called Laplace operator and it is defined as: $\nabla^2 f = f_{xx} + f_{yy} + f_{zz}$

Example 6: Find ∇f and $\nabla^2 f$ for $f(x, y, z) = x^3 e^y + xy^2 z^3$ $f_x = 3x^2 e^y + y^2 z^3 \quad \Rightarrow \quad f_{xx} = 6x e^y$ جامعة بابل – كلية العلوم – قسم الفيزياء – محاضرات الرياضيات للفصل الثاني - المرحلة الاولى العام العام الدراسي 2024 - 2025 - (2) - أ.م.د فؤاد حمزة عبد

$$\begin{aligned} f_y &= x^3 e^y + 2xyz^3 & \Leftrightarrow f_{yy} = x^3 e^y + 2xz^3 \\ f_z &= 3xy^2 z^2 & \Leftrightarrow f_{zz} = 6xy^2 z \\ \nabla f &= f_x \, i + f_y \, j + f_z \, k = (3x^2 e^y + y^2 z^3) \, i + (x^3 e^y + 2xyz^3) \, j + 3xy^2 z^2 \, k \\ \nabla^2 f &= f_{xx} + f_{yy} + f_{zz} = 6xe^y + x^3 e^y + 2xz^3 + 6xy^2 z \end{aligned}$$

3. Divergence and the Curl of a Vector Field

The Divergence of a vector field $F(x, y, z) = F_1(x, y, z)i + F_2(x, y, z)j + F_3(x, y, z)k$ is computed as:

$$div F = \nabla F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Example 7: Find *div F* if $F(x, y, z) = xzi + e^{yz}j - \ln(xy)k$

$$div F = \nabla F = \frac{\partial(xz)}{\partial x} + \frac{\partial(e^{yz})}{\partial y} - \frac{\partial(\ln(xy))}{\partial z} = z + ze^{yz}$$

The Curl of a vector field $F(x, y, z) = F_1(x, y, z)i + F_2(x, y, z)j + F_3(x, y, z)k$ it is another vector defined as the following determinant:

$$curl F = \nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)i - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)j + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)k$$

Example 8: Find curl F if F(x, y, z) = xyi + yzj + xzk at (-1, -3, -2)

$$curl F = \nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & yz & xz \end{vmatrix}$$
$$= \left(\frac{\partial(xz)}{\partial y} - \frac{\partial(yz)}{\partial z}\right)i - \left(\frac{\partial(xz)}{\partial x} - \frac{\partial(xy)}{\partial z}\right)j + \left(\frac{\partial(yz)}{\partial x} - \frac{\partial(xy)}{\partial y}\right)k$$
$$= -yi - zj - xk$$

curl F $\Big|_{\text{at}(-1,-3,-2)} = 3i + 2j + k$

Exercises

- 1. Let $u = x \cos y$, $v = x \sin y$. Find Jacobian matrix and its determinant at $(1, \pi/4)$.
- 2. Let $u = xe^{y}$, $v = ye^{z}$, $w = ze^{x}$. Find Jacobian matrix and its determinant.
- 3. Find the determinant of the Hessian matrix for the functions
 - (a) $f(x, y) = x^2 y + x y^2$.
 - (b) $f(x, y, z) = x^2 \sin(yz)$
- 4. If $f(x, y, z) = x^3 y^2 z$, then find
 - (*a*) ∇f at (-1,2,-2)
 - (*b*) $\nabla^2 f$ at (1,-3,2)
- 5. If $F(x, y, z) = yze^{xy}i + xze^{xy}j + (e^{xy} + 3\cos 3z)k$, then find
 - (a) div F at $(0, \sqrt{6}, \pi/6)$
 - (b) curl F