
  
 

Symbols Table 

Introduction 

A compiler needs to collect and use information about the names appearing in the 
source program. This information is entered into a data structure called a symbol 
table. The information collected about a name includes:- 

1- The string of characters by which it is denoted. 
2- It's type (e.g. integer, real, string). 
3- It's form (e.g. a simple variable, a structure). 
4- It's location in memory. 
5- Other attributes depending on the language. 

Each entry in the symbol table is a pair of the form (name, information). Each 
time a name is encountered, the symbol table is searched to see whether that name 
has been seen previously. If the name is new, it is entered into the table. 
Information about that name is entered into the table during lexical and syntactic 
analysis. 

The information collected in the symbol table is used during several stages in the 
compilation process. It is used in semantic analysis, that is, in checking that uses of 
names are consistent with their implicit or explicit declarations. It is also used 
during code generation. Then we need to know how much and what kind of run-
time storage must be allocated to a name. 

There are also several ways in which the symbol table can be used to aid in error 
detection and correction. For example, we can record whether an error message 
such as "variable A undefined" has been printed out before, and reject from doing 
so more than once. Additionally, space in the symbol table can be used for code-
optimization purposes, such as to flag temporaries that are used more than once. 

The primary issues in symbol table design are: 

 The format of the entries,  
 The method of access, and  
 The place where they are stored (primary or secondary storage).  
 
Block-structured languages impose another problem in that the same identifier can 
be used to represent distinct names with nested scopes. In compilers for such 
languages, the symbol table mechanism must make sure that the innermost 
occurrence of an identifier is always found first, and that names are removed from 
the active portion of the symbol table when they are no longer active. 



  
 

The Contents of a Symbol Table 

A symbol table is a table with two fields, a name field, and the information 
field. We require several capabilities of the symbol table. We need to be able to:- 

1- Determine whether a given name is in the table. 
2- Add a new name to the table. 
3- Access the information, associated with a given name. 
4- Add new information for a given name. 
5- Delete a name or group of names from the table. 

In a compiler, the names in the symbol table denote objects of various sorts. There 
may be separate tables for variable names, labels, procedure names, constants, and 
other types of names depending on the language. Depending on how lexical 
analysis is performed, it may be useful to enter keywords into the symbol table 
initially. If the languages does not reserve keywords (forbid the use of keywords as 
identifiers), then it is essential that keywords be entered into the symbol table and 
that they have associated information warning of their possible use as a keyword. 

Basic Implementation Techniques 

The first consideration of symbol table implementation is how to enter and find, 
store and search for names. Depending on the number of names we wish to 
accommodate and the performance we desire, a wide variety of implementations is 
possible:- 

 Unordered List 

The use of an unordered list is the simplest possible storage mechanism. The only 
data structure required is an array, with insertions being performed by adding new 
names in the next available location. Of course, a linked list may be used to avoid 
the limitations imposed by a fixed array size. Searching is simple using an iterative 
searching algorithm, but it is impractically slow except for very small tables (no 
more than 20 items). 

 Ordered List 

If a list of names in an array is kept ordered, it may be searched using binary 
searched, which requires O (log (n)) time for a list of n entries. However, each 
new entry must be inserted in the array in the appropriate location. Insertion in an 
ordered array is a relatively expensive operation. Thus ordered lists are typically 
used only when the entire set of names in a table is known in advance. They are 
useful therefore for tables of reserved words. 



  
 

Binary Search Trees 

Binary search trees are a data structure designed to combine the size 
flexibility and insertion efficiency of a linked data structure with the search 
speed provided by a binary search. On average, entering or searching for a name 
in a binary search tree built from random inputs requires O(log(n)) time. One 
compelling argument in favor of binary search trees is their simple, widely known 
implementation. This implementation simplicity and the common perception of 
good average-case performance make binary search trees a popular technique for 
implementing symbol tables. 

The algorithm for implementing a simple binary search tree can be found in Fig. 
33. 

(1) While P ≠ nil do 

(2)  If NAME = NAME (P) then  /* Name found, take action on success */ 

(3) Else if NAME< NAME (P) then P:= LEFT (P)     /* visit left child  */ 

(4) Else /* NAME (P) < NAME */ P:= RIGHT (P)   /* visit right child*/ 

       /* if we fall through the loop, we have failed to find NAME */ 

Fig. 33: Binary Search Tree routine 

Of greater concern is how acceptable performance can be ensured using a binary 
search tree symbol table implementation. If a binary tree is perfectly balanced, the 
expected search time is O(log(n)). A tree built from random inputs also has an 
expected search time that is proportional to the log of the number of items in the 
tree. However, the worst-case performance is O (n) and the actual occurrence of 
this worst case is not improbable. For example, entering names in alphabetic order 
(A, B, C, D, E) results in a tree that is a linear list, and even random-looking 
sequences of names can produce the same result (A, E, B, D, C, for example). 

This problem can be overcome by using an insertion algorithm that keeps the 
tree approximately balanced. Tree-balancing algorithms are based on the idea 
of keeping the height of each subtree rooted at a node within 1 of the height of 
its sibling subtree. An entire subtree is moved to a different root node when an 
insertion would unbalance a node. The fact that rebalancing can be done by 
moving subtrees rather than individual nodes keep the insertion cost at O(log(n)). 

One significant advantage of binary trees for implementing symbol tables is 
that their space overhead, for storing the pointers that define the tree, is 



  
 

directly proportional to the number of nodes in the tree. In contrast, hash 
tables have a fixed space overhead, storage for the hash table itself, regardless 
of the number of names that have been entered. One implementation technique 
is to use many symbol tables to represent various program, components, rather 
than using one global table. 

 

Hash Tables 

Hash tables are probably the most common means of implementing symbol 
tables in production compilers and other system software. With a large enough 
table, a good hash function, and the appropriate collision-handling technique, 
Searching can be done in essentially constant time regardless of the number of 
entries in the table. 

The central idea of a hash table is to map each of a large space of possible 
names that might be entered into a symbol table to one of a fixed number of 
positions in a hash-table. This mapping is done by a hash function. 

A hash function is normally assumed to have the following properties:- 

1- h(n) depends on n. 
2- h can be computed quickly 
3- His uniform and randomizing in mapping names to hash addresses. That is all 
hash addresses are mapped with equal probability, and similar names don’t cluster 
to the same hash addresses. 

Some hash functions treat a name as a sequence of words, with some number of 
characters per word. Names longer than one word are folded together into one 
word, usually by exclusive operations or by multiplying together two n bit 
words and keeping the middle n bits of the product. The hash value is then 
obtained by taking the remainder modulo m, where the hash table has m entries. 
Note that if m is equal to 2b, this division simply isolates the rightmost b bits. 
Thus, such table sizes should be avoided. 

An alternative is to compute a hash value character by character, as a token is 
scanned. The simple hash function includes (c1 + c2 +… + cn) mod m or (c1* c2 
* c3 * … *cn) mod m, where the token is composed of characters c1, c2, …, cn , 
though care must be taken to avoid or handle overflows in doing such 
computations. 

Fig.34 below shows a hash table. 



  
 

 

 

 

 

 

 

 

 

 

Fig.34: Hash Table 
 

Fig.34 shows two tables, a hash table, and a storage table. The hash table consist 
of k words, numbered 0, 1 … k-1. These words are pointers into the storage table 
to the heads of k separate linked lists (some lists may be empty). Each record in the 
symbol table appears on exactly one of these lists 

To determine whether NAME is in the symbol table, we apply the NAME a 
hash function h such that h(NAME) is an integer between 0 and k-1. It is on the 
list numbered h(NAME) that the record for NAME belongs. To inquire about 
NAME, we compute h(NAME) and search that list only. To enter NAME into 
the symbol table, we create a record for it at the first available place in the storage 
table and link that record to the beginning of the h(NAME)'th list. Since the 
average list is n/k records long if there are n names in the table, we have cut our 
searching work down by a factor of k. As k can as large as we like, we can choose 
k sufficiently large that n/k will be small for even very large programs. 

Resolving Collisions 

Because the number of the possible names that can be entered into a symbol 
table is usually much larger than the number of hash addresses, collisions can 
occur. That is for names n1 and n2 (n1≠n2) but h(n1) =h(n2), when such a 
collision occurs, several collisions-handling techniques are possible:- 
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1- Linear Resolution 
If  position  h(n)  is occupied, try  (h(n)+1) mod m ,  (h(n)+2) mod m , and so on. 
If any table positions are free, they will be found eventually. The main problem 
with this technique is that as the table fills, long chains tend to form. 
2- Add-the-Hash Rehash 
If h(n) is occupied, try  (2*h(n)) mod m, (3*h(n)) mod m and so on. This helps 
prevent long chains, but m must be prime if all hash positions are to be eventually 
tried. 
3- Quadratic Rehash 
If h(n) is occupied, try (h(n)+12) mod m, (h(n)+22) mod m, and so on. 
4- Collision Resolution by Chaining 
Names are not placed in the hash table at all, but rather records for all names that 
hash to a given value, are chained together on a linked list. Only list headers are 
stored in the hash table itself as shown in Fig.35. 
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Fig.35: Hash tables with chaining for collision Resolution 

Hash Table Chained entries for names 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Symbols, values & hash code derived from symbols. 

(b) Eight entry hash table with linked lists of symbols & values. 

 

 

 

 

 

 

 

 

 

Symbol Value Hash Code 

Ali 14025 0 

Amir 45012 5 

Emad 34004 2 

Sami 45019 2 

Samir 45009 7 

Zohair 15015 0 

Talib 25014 1 

farid 25014 3 

Wahab 14004 4 

Saad 24005 6 

0   Ali 14025 

1   Talib 25014 

2   Emad 34003 

3   Farid 25014 

4   Wahab 14004 

5   Amir 45012 

6   Saad 24005 

7   Samir 45009 

(a) 

Fig.36: Hash Coding 

Hash Table  (b) 

Sami     45019 

Zohair  15015 



  
 

Examples 

1.Use Hash table of length (6) to save the following words: (frog, tree, and hill). Suppose the 
hash function is the sum of index of each character in a token. Use Add-the hash-rehash (if 
necessary).        
 
We simply store it a position h(x)-1 of the array 
frog = 1+2+3+4 = 10 mod 6 =  4 
tree = 1+2+3+4 = 10 mod 6 = 4 (collision, 2*4 mod 6 = 2) 
hill   = 1+2+3+4 = 10 mod 6 = 4 (collision, 2*4  mod 6 = 2 collision, 3*4 mod 6 = 0) 
 

 

 
 
 
 
 

2. Use Hash table of length (12) to save the following tokens: (ett, tva, tre, fem and fyra). 
Suppose the hash function is the sum of index of each character in a token. Use Linear 
Resolution (if necessary). 

We simply store it a position h(x)-1 of the array 

ett = 1+2+3 = 6 mod 12 = 6 
tva = 1+2+3 = 6 mod 12 = 6 (collision, 6+1 mod 12 = 7) 
tre= 1+2+3 = 6 mod 12 = 6 (collision, 6+1 mod 12 = 7 collision , 6+2 mod 12 = 8) 
fem = 1+2+3 = 6 mod 12 = 6 (collision, 6+1 mod 12 = 7 collision , 6+2 mod 12 = 8 collision , 
6+3 mod 12 = 9) 
fyra = 1+2+3+4= 10 mod 12 = 10 
 

 

 

 

 

 

 

 

x h(x) 
hill 0 
  1 
tree 2 
  3 
frog 4 
  5 

x h(x) 
 0 
  1 

 2 
 3 
 4 
 5 

ett 6 
tva 7 
tre 8 

fem 9 
fyra 10 

 11 



  
 

 

3.Use Hash table of length (12) to save the following tokens: (sju, atta, nio, tio, elva, and tolv). 
Suppose the hash function is the sum of index of each character in a token. Use Linear 
Resolution (if necessary). 

We simply store it a position h(x)-1 of the array 

sju = 1+2+3 = 6 mod 12 = 6  
atta = 1+2+3+4 = 10 mod 12 = 10 
nio = 1+2+3 = 6 mod 12 = 6 (collision, 6+1 mod 12 = 7 ) 
tio = 1+2+3 = 6 mod 12 = 6 (collision, 6+1 mod 12 = 7 collision , 6+2 mod 12 = 8)  
elva = 1+2+3+4= 10 mod 12 = 10 collision, 10+1 mod 12 = 11 
tolv= 1+2+3+4= 10 mod 12 = 10 collision, 10+1 mod 12 = 11 collision , 10+2 mod 12 = 0 

 
 
 

 

 

 

 

 

 
 
 

 

4.Use Hash table of length (4) to save the following tokens: (Genetic, Image, Token, and 
Neural). Suppose the hash function is the sum of index of each character in a token. Use 
Add-the hash-rehash (if necessary). 

We simply store it a position h(x)-1 of the array 
  
Genetic = 1+2+3+4+5+6+7 = 28 mod 4 = 0 
Image = 1+2+3+4+5 = 15 mod 4 = 3 
Token = 1+2+3+4+5 = 15 mod 4 = 3 (collision, 2*3 mod 4 = 2 ) 
Neural = 1+2+3+4+5+6 = 21 mod 4 = 1 
  
 
 
 
 
 

x h(x) 
tolv 0  

  1 
 2 
 3 
 4 
 5 

sju 6 
nio 7  
tio 8 

 9 
atta 10 
elva 11 



  
 

 
 
 
 
 
 
 
 
5.Use Hash table of length (6) to save the following words: (frog, tree, and hill). Suppose the 
hash function is the sum of index of each character in a token. Use Add-the hash-rehash (if 
necessary).        
 
We simply store it a position h(x)-1 of the array 
frog = 1+2+3+4 = 10 mod 6 =  4 
tree = 1+2+3+4 = 10 mod 6 = 4 (collision, 2*4 mod 6 = 2) 
hill   = 1+2+3+4 = 10 mod 6 = 4 (collision, 2*4  mod 6 = 2 collision, 3*4 mod 6 = 0) 
 

 

 
 
 
 
 
 
 
6. Use Hash table of length (6) to save the following words: (frog, tree, and hill). Suppose the 
hash function is the sum of index of each character in a token. Use Collision Resolution by 
Chaining (if necessary).        
 
We simply store it a position h(x)-1 of the array 
frog = 1+2+3+4 = 10 mod 6 =  4 
tree = 1+2+3+4 = 10 mod 6 = 4  
hill   = 1+2+3+4 = 10 mod 6 = 4  
 

 

 

 

 

 

x h(x) 
Genetic 0 
 Neural 1 
Token 2 
Image 3 

x h(x) 
hill 0 
  1 
tree 2 
  3 
frog 4 
  5 

x h(x) 
 0 
  1 
 2 
  3 
frog 4 
  5 

tree hill 



  
 

7. Use Hash table of length (8) to save the following tokens: (fact, sum, math, and div). 
Suppose the hash function the sum of index of each character in a token. Use Quadratic Rehash 
(if necessary). 

 
fact = (1+2+3+4) mod 8= 10 mod 8 =2  
sum = (1+2+3) mod 8= 6 mod 8= 6 
math=  (1+2+3+4) mod 8= 10 mod 8 =2 collision  
      (10+1^2) mod 8=  11 mod 8 = 3  
div= (1+2+3) mod 8= 6 collision 
 (6+1^2) mod 8=  7 mod 8 = 7  
 

 x h(x) 
0  
1  
2 fact 
3 math 
4  
5  
6 sum 
7 div 


