
Computer Architecture
Second year

Dr. Salah Al-Obaidi

Lecture #4: Memory Addressing Spring 2025

Contents

Contents i

4 Memory Addressing 36

4.1 Interpreting Memory Addresses . 36

4.2 Addressing Modes . 38

4.3 Memory Addressing: More details . 38

4.3.1 Immediate Addressing . 41

4.3.2 Direct Addressing . 42

4.3.3 Indirect Addressing . 42

4.3.4 Register Addressing . 42

4.3.5 Register Indirect Addressing . 43

4.3.6 Displacement Addressing . 43

4.3.7 Stack Addressing . 44

i

4. Memory Addressing

Independent of whether the architecture is load-store or allows any operand to be a memory

reference, it must define how memory addresses are interpreted and how they are specified.

4.1 Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a function of

the address and the length? The computers deal with instructions that are byte addressed

and provide access for bytes (8 bits), half words (16 bits), and words (32 bits). Most of

the computers also provide access to double words (64 bits).

There are two different conventions for ordering the bytes within a larger object:

■ Little Endian byte order puts the byte whose address is “x . . . x000” at the least

significant position in the double word (the little end). The bytes are numbered:

■ Big Endian byte order puts the byte whose address is “x . . . x000” at the most

significant position in the double word (the big end). The bytes are numbered:

When operating within one computer, the byte order is often unnoticeable— only

programs that access the same locations as both, say, words and bytes, can notice the

difference. Byte order is a problem when exchanging data among computers with different

36

4.1. Interpreting Memory Addresses

orderings, however. Little Endian ordering also fails to match the normal ordering of

words when strings are compared. Strings appear “SDRAWKCAB” (backwards) in the

registers.

A second memory issue is that in many computers, accesses to objects larger than a

byte must be aligned. An access to an object of size s bytes at byte address A is aligned if

A mod s = 0. Figure 4.1 shows the addresses at which an access is aligned or misaligned.

Figure 4.1: Aligned and misaligned addresses of byte, half-word, word, and
double-word objects for byte addressed computers. For each misaligned example
some objects require two memory accesses to complete. Every aligned object can always
complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns
specify the low-order 3 bits of the address.

Why would someone design a computer with alignment restrictions and avoid

misalignment?:

• Misalignment causes hardware complications, since the memory is typically aligned

on a multiple of a word or double-word boundary.

• A misaligned memory access may, therefore, take multiple aligned memory references.

37

4. Memory Addressing

Thus, even in computers that allow misaligned access, programs with aligned accesses

run faster.

Now that we have discussed alternative interpretations of memory addresses, we can

discuss the ways addresses are specified by instructions, called addressing modes.

4.2 Addressing Modes

In this section, we will look at addressing modes—how architectures specify the address

of an object they will access. Addressing modes specify constants and registers

in addition to locations in memory. When a memory location is used, the actual

memory address specified by the addressing mode is called the effective address. Figure

4.2 shows all the data addressing modes that have been used in recent computers.

These addressing modes are only useful when the elements being accessed are adjacent

in memory. RISC computers use displacement addressing to simulate register indirect

with 0 for the address and to simulate direct addressing using 0 in the base register. In

our measurements, we use the first name shown for each mode.

Figure 4.2 shows the most common names for the addressing modes, though the names

differ among architectures. In this figure, the left arrow (←) is used for assignment. We

also use the array Mem as the name for main memory and the array Regs for registers.

Thus, Mem[Regs[R1]] refers to the contents of the memory location whose address is

given by the contents of register 1 (R1).

Addressing modes can significantly reduce instruction counts; they also add to the

complexity of building a computer and may increase the average clock cycles per instruction

(CPI) of computers that implement those modes. Thus, the usage of various addressing

modes is quite important in helping the architect choose what to include.

4.3 Memory Addressing: More details

The address field or fields in a typical instruction format are relatively small. We

would like to be able to reference a large range of locations in main memory or, for some

38

4.3. Memory Addressing: More details

Figure 4.2: Selection of addressing modes with examples, meaning, and usage.
In autoincrement/-decrement and scaled addressing modes, the variable d designates the
size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8
bytes).

systems, virtual memory. To achieve this objective, a variety of addressing techniques has

been employed. They all involve some trade-off between address range and/or addressing

flexibility, on the one hand, and the number of memory references in the instruction and/or

the complexity of address calculation, on the other hand.

These modes are illustrated in Figure 4.3. In this section, we use the following notation:

• A = contents of an address field in the instruction.

• R = contents of an address field in the instruction that refers to a register.

• EA = actual (effective) address of the location containing the referenced operand.

39

4. Memory Addressing

• (X) = contents of memory location X or register X.

Figure 4.3: Addressing Modes.

Table 4.1 indicates the address calculation performed for each addressing mode. Before

beginning this discussion, two comments need to be made. First, virtually all computer

architectures provide more than one of these addressing modes. The question arises as

to how the processor can determine which address mode is being used in a particular

instruction. Several approaches are taken. Often, different opcodes will use different

40

4.3. Memory Addressing: More details

addressing modes. Also, one or more bits in the instruction format can be used as a mode

field. The value of the mode field determines which addressing mode is to be used.

Table 4.1: Basic Addressing Modes.

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA = A Simple Limited address space
Indirect EA = (A) Large address space Multiple memory references
Register Operand LA = R No memory reference Limited address space
Register indirect EA = (R) Large address space Extra memory reference
Displacement LA = (R) + A Flexibility Complexity
Stack EA = top of stack No memory reference Limited applicability

The second comment concerns the interpretation of the effective address (EA). In a

system without virtual memory, the effective address will be either a main memory

address or a register. In a virtual memory system, the effective address is a virtual

address or a register. The actual mapping to a physical address is a function of the memory

management unit (MMU) and is invisible to the programmer.

4.3.1 Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand value is

present in the instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables.

Typically, the number will be stored in twos complement form; the leftmost bit of the

operand field is used as a sign bit.

The advantage of immediate addressing is that no memory reference other than the

instruction fetch is required to obtain the operand, thus saving one memory or cache cycle

in the instruction cycle. The disadvantage is that the size of the number is restricted to

the size of the address field, which, in most instruction sets, is small compared with the

word length.

41

4. Memory Addressing

4.3.2 Direct Addressing

A very simple form of addressing is direct addressing, in which the address field contains

the effective address of the operand:

EA = A

The technique was common in earlier generations of computers but is not common on

contemporary architectures. It requires only one memory reference and no special

calculation. The obvious limitation is that it provides only a limited address space.

4.3.3 Indirect Addressing

With direct addressing, the length of the address field is usually less than the word length,

thus limiting the address range. One solution is to have the address field refer to the

address of a word in memory, which in turn contains a full-length address of the operand.

This is known as indirect addressing:

EA = (A)

As defined earlier, the parentheses are to be interpreted as meaning contents of. The

obvious advantage of this approach is that for a word length of N , an address space of

2N is now available. The disadvantage is that instruction execution requires two memory

references to fetch the operand: one to get its address and a second to get its value.

Although the number of words that can be addressed is now equal to 2N , the number

of different effective addresses that may be referenced at any one time is limited to 2K ,

where K is the length of the address field.

4.3.4 Register Addressing

Register addressing is similar to direct addressing. The only difference is that the

address field refers to a register rather than a main memory address:

42

4.3. Memory Addressing: More details

EA = R

To clarify, if the contents of a register address field in an instruction is 5, then register R5

is the intended address, and the operand value is contained in R5. Typically, an address

field that references registers will have from 3 to 5 bits, so that a total of from 8 to 32

general-purpose registers can be referenced.

The advantages of register addressing are that

1. only a small address field is needed in the instruction

2. no time-consuming memory references are required. The memory access time for a

register internal to the processor is much less than that for a main memory address.

The disadvantage of register addressing is that the address space is very limited.

4.3.5 Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect addressing

is analogous to indirect addressing. In both cases, the only difference is whether the address

field refers to a memory location or a register. Thus, for register indirect address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same

as for indirect addressing. In both cases, the address space limitation (limited range of

addresses) of the address field is overcome by having that field refer to a word-length

location containing an address. In addition, register indirect addressing uses one less

memory reference than indirect addressing.

4.3.6 Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing and

register indirect addressing. It is known by a variety of names depending on the context

43

4. Memory Addressing

of its use, but the basic mechanism is the same. We will refer to this as displacement

addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields, at least

one of which is explicit. The value contained in one address field (value = A) is used

directly. The other address field, or an implicit reference based on opcode, refers to a

register whose contents are added to A to produce the effective address.

4.3.7 Stack Addressing

The final addressing mode that we consider is stack addressing. A stack is a linear

array of locations. It is sometimes referred to as a pushdown list or last-in-first-out queue.

The stack is a reserved block of locations. Items are appended to the top of the stack so

that, at any given time, the block is partially filled. Associated with the stack is a pointer

whose value is the address of the top of the stack. Alternatively, the top two elements

of the stack may be in processor registers, in which case the stack pointer references the

third element of the stack. The stack pointer is maintained in a register. Thus, references

to stack locations in memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine instructions

need not include a memory reference but implicitly operate on the top of the stack.

44

	Contents
	Memory Addressing
	Interpreting Memory Addresses
	Addressing Modes
	Memory Addressing: More details
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Register Addressing
	Register Indirect Addressing
	Displacement Addressing
	Stack Addressing

