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B.Sc. Fourth Year – Laser Physics Department -   Laser 

Design I-LECTURE  THREE 

  

7. Threshold conditions - laser losses 

     It was explained above that a steady state level of oscillation is reached 

when the rate of amplification is balanced by the rate of loss. This is the 

situation in continuous output (CW) lasers; it is a little different in pulse 

lasers. Thus, while a population inversion is a necessary condition for laser 

action, it is not a sufficient one because the minimum (i.e. threshold value) 

of the gain coefficient must be large enough to overcome the losses and 

sustain oscillations.   The threshold gain, in turn, through Eq. (1.15) 

specifies the minimum population inversion required. The total loss of the 

system is due to a number of different processes; the most important ones 

include: 

1. Transmission at the mirrors — the transmission from one of the mirrors 

usually provides the useful output, the other mirror is made as reflective 

as possible to minimize losses. 

2. Absorption and scattering at the mirrors. 

3. Absorption in the laser medium due to transitions other than the desired 

transitions (as mentioned earlier most laser media have many energy 

levels, not all of which will be involved in the laser action). 

4. Scattering at optical inhomogeneities in the laser medium - this applies 

particularly to solid-state lasers. 

 5. Diffraction losses at the mirrors. 

     To simplify matters, let us include all the losses except those due to 

transmission at the mirrors in a single effective loss coefficient () which 

reduces the effective gain coefficient to (k -). We can determine the 

threshold gain by considering the change in irradiance of a beam of light 

undergoing a round trip within the laser cavity. We assume that the laser 

medium fills the space between the mirrors (M1) and (M2) which have 

reflectances (R1) and (R2) and a separation (L). Then in traveling from 

(M1) to (M2), the beam irradiance increases from (I0) to (I) where from Eq. 

(16), ( )0 expI I k L= −   .After reflection at (M2), the beam irradiance 
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will be 
( )2 0 expR I k L−   and after a complete round trip the final 

irradiance will be such that the round trip gain (G) is 

( )1 2 exp 2
final irradiance

G R R k L
initial irradiance

= = −    (ACTIVE MEDIUM GAIN) 

     If (G) is greater than unity a disturbance at the laser resonant frequency 

will undergo a net amplification and the oscillations will grow; if (G) is 

less than unity the oscillations will die out. Therefore, we can write the 

threshold condition  as  

 ( )1 2 exp 2 1thG R R k L= − =         ……………..…… (18) 

where (k th) is the threshold gain. It is important to realize that the threshold 

gain is equal to the steady-state gain in continuous output lasers  

      The small signal gain required to support steady-state operation 

depends on the laser medium through (k) and (), and on the laser 

construction through R1, R2 and L. From Eq. (16) we can see that 

1 2

1 1
ln

2
thk

L R R


 
= +  

 
    ……………………….………… (19) 

     where the first term represents the volume losses and the second the loss 

in the form of the useful output. If (k) is high then it is relatively easy to 

achieve laser action 

8-The rate equations of 4-levels:  
 

The rate equations describe the rate of change of the populations of the 

laser medium energy levels in terms of the emission and absorption 

processes and pump rate. We shall consider the ideal four-level system 

shown in Fig. (8). 
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Figure (8 ) Transitions within an ideal four-level system 

 

 

We assume that E1 kT so that the thermal population of level 1 is 

negligible; we also assume that the threshold population density (N th) is 

very small compared with the ground state population so that during lasing 

the latter is hardly affected. If we let (R2) and (R1) be the rates at which 

atoms are pumped into levels 2 and 1 respectively, we can write the rate 

equations for these levels (assuming g1 =g2 for simplicity, and hence B2l 

=B12) as 

2
2 2 21 21 2 1( )

dN
R N A B N N

dt
= − − −     …………….……… (20) 

and 

1
1 21 2 1 2 21 1 10( )

dN
R B N N N A N A

dt
= + − + − ……………… (21) 

Process (R1), which populates the lower laser level 1, is detrimental to laser 

action as it clearly reduces the population inversion. Although such 

pumping is unavoidable in many lasers, for example, gas lasers pumped 

via an electrical discharge. We shall henceforth ignore (R1).  If we assume 

that the system is being pumped at a steady state then we have 

E3 

E2 N2 

R2 

N2A21 N2  B21 N1  B21 

Eo 

E1 N1 

R1 
N1 A10 
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1 2 0
dN dN

dt dt
= = . 

Hence, we may solve Eqs. (1.24) and (1.25) for (N1) and (N2).  

  2
1

10

R
N

A
=                                          ( )

121
2 2 21 21

10

1
B

N R A B
A







− 
= + + 

 
  

and hence 

21

10
2 1 2

21 21

1
A

A
N N R

A B

 
− 

 − =
+ 

 
 

    …………………………………………….… (22) 

We can see that unless A 2I <A 10, the numerator will be negative and no 

population inversion can take place. As the Einstein (A) coefficients are 

the reciprocals of the spontaneous lifetimes, the condition A 21 <A 10 is 

equivalent to the condition 10<21. that is the upper lasing level has a 

longer spontaneous emission lifetime than the lower level. In most lasers 

2110 and 21

10

1 1
A

A

 
−  

 
 . 

Now, below the threshold we may neglect (pv) since lasing has not yet 

commenced and most of the pump power appears as spontaneous emission; 

thus Eq. (26) can be written as 

21

10
2 1 2

21

1
A

A
N N R

A

 
− 

 − =
 
 
 

  

That is, there is a linear increase in population inversion with pumping rate 

but insufficient inversion to give amplification. 

At the threshold, (pv) is still small and assuming g1 = g2 we can express 

the threshold population inversion in terms of the threshold pump rate, that 

is 



5 

 

( )

21

10
2 1

21

1

th thth

A

A
N N N R

A

 
− 

 − = =
 
 
 

   ……………… (23)   

or inserting the above approximation that 21

10

1 1
A

A

 
−  

 
    

Rth = Nth A21    

or 

 
21

th
th

N
R


=    

     Each atom raised into level 2 requires an amount of energy (E3) so that 

the total pumping power per unit volume (Pth) required at threshold may 

be written as 

3

21

th
th

E N
P


=   

We may substitute for (Nth) from eq.(23) to give 

2 2

3 0

2

8 th
th

E k n
P

c

  
=     …………………….……………… (24)   

     This is the point at which the gain due to the population inversion 

exactly equals the cavity losses. Further increase of the population 

inversion with pumping is impossible in a steady state situation since this 

would result in a rate of induced energy emission, which exceeds the 

losses. Thus, the total energy stored in the cavity would increase with time 

in violation of the steady-state assumption (this is the phenomenon of gain 

saturation described earlier). 

This argument suggests that [ N2 —N1 ] must remain equal to Nth 

regardless of the amount by which the threshold pump rate is exceeded. 

Equation (26) shows that this is possible providing (p  B21) increase (once 

R2 exceeds its threshold value given by Eq. (27) so that the equality 
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A B

 
− 

 =
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 
 

   

is satisfied. Now combining this equation with Eq. (27) we have 

 

2

21 21 21

thR R

A A B
=

+
  …………………………… (25)  

 

     Since the power output (W) of the laser will be directly proportional to 

the optical power density within the laser cavity and the pump rate into 

level 2 (i.e. R2) will be proportional to the pump power (P) delivered to the 

laser, we may rewrite eq.(29) as 

 

0 1
th

P
W W

P

 
= − 

 
  ………………………….…… (26)   

Where (W0) is a constant. 

    

  Thus if the pump rate is increased above the value (P th) the beam 

irradiance is expected to increase linearly with the pump rate. This is borne 

out in practice and plots of population inversion and laser output as a 

function of pump rate are of the form shown in Fig. (8). 

      The additional power above the threshold is channeled into a single (or 

a few) cavity mode(s). Spontaneous emission still appears above the 

threshold but it is extremely weak in relation to the laser output as it is 

emitted in all directions and has a much greater frequency spread. 

 

9-Stability of Laser Resonators 
       For certain combinations of r1, r2, and L, the equations summarized in 

the previous subsection give nonphysical solutions (that is, imaginary spot 

sizes). Rays that bounce back and forth between the spherical mirrors of 

a laser resonator experience a periodic focusing action. The effect on the 

rays is the same as in a periodic sequence of lenses.  

     Rays passing through a stable sequence of lenses are periodically 

refocused. For unstable systems, the rays become more and more 

dispersed the further they pass through the sequence. In an optical 

resonator operated in the stable region, the waves propagate between 
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reflectors without spreading appreciably. This fact can be expressed by a 

stability criterion 

0≤ g1 g2 ≤ 1                                        ……………… (52) 

or 

1 2

0 1 1 1
L L

r r

  
 − −   
  

                      ……………… (53) 

To show graphically which type of resonator is stable and which is unstable, 

it is useful to plot a stability diagram on which each particular resonator 

geometry is represented by a point. This is shown in Fig. (17), where the 

parameters 𝑔1 = 1 −
𝐿

𝑟1
  ,   𝑔2 = 1 −

𝐿

𝑟2
    are drawn as the coordinate axes. 

 
 

Figure (17). Stability diagram for the passive laser resonator. 

         

     All cavity configurations are unstable unless they correspond to points 

located in the area enclosed by a branch of the hyperbola g1 g2 = 1 and the 

coordinate axes. The origin of the diagram represents the confocal system. 

The diagram is divided into positive and negative branches defining 

quadrants for which (g1 g2) is either positive or negative. The reason for 

this classification becomes clear when we discuss unstable resonators. 

 

 


