1. Grammar:

It is a finite set of formal rules for generating correct sentences or meaningful correct sentences. A grammar is a set of rules which are used to construct a language (combine words to generate sentences).

Constitute of Grammar:

Grammar is basically composed of two basic elements:

1. **Terminal Symbols**: Terminal symbols are those which are the components of the sentences generated using a grammar and are represented using small case letter like a, b, c etc.

2. **Non-Terminal Symbols:** Non-Terminal Symbols are those symbols which take part in the generation of the sentence but are not the component of the sentence. Non-Terminal Symbols are also called **Auxiliary Symbols** and **Variables**. These symbols are represented using a capital letter like A, B, C, etc.

Formal Definition of Grammar:

Definition: A grammar is a quadruple (\sum , V, S, P), where:

1. \sum is a finite nonempty set called the **terminal alphabet**. The elements of \sum are called the **terminals**.

2. V is a finite nonempty set disjoint from Σ . The elements of V are called the **nonterminals** or **variables**.

3. $S \in V$ is a distinguished nonterminal called the **start symbol**.

4. P is a finite set of productions (or rules) of the form

$\alpha \rightarrow \beta$

where $\alpha \in (\Sigma UV)^*V$ (ΣUV)^{*} and $\beta \in (\Sigma UV)^*$, i.e. α is a string of terminals and nonterminals containing at least one nonterminal and β is a string of terminals and nonterminals.

Example 1: Let $G1 = (\{0, 1\}, \{S, T, O, I\}, S, P)$, where P contains the following productions:

 $S \rightarrow OT$ $S \rightarrow OI$ $T \rightarrow SI$ $O \rightarrow 0$ $I \rightarrow 1$

The grammar G1 can be used to describe the set $\{0^n 1^n | n \ge 1\}$.

Computational Theory

Example 2: An article can be the word <u>a</u> or <u>the</u>:

 $A \rightarrow a$ $A \rightarrow the$

• A noun can be the word dog, cat or rat:

 $N \rightarrow dog, N \rightarrow cat, N \rightarrow rat$

A noun phrase is an article followed by a noun:

 $P \rightarrow AN$

An verb can be the word loves, hates or eats:

$V \rightarrow loves, V \rightarrow hates, V \rightarrow eats$
--

A sentence can be a noun phrase, followed by a verb, followed by another noun phrase:

```
S \rightarrow PVP
```

Taken all together, a grammar G1 for a small subset of unpunctuated English:

$S \rightarrow PVP$	$A \rightarrow a$
$P \rightarrow AN$	$A \rightarrow the$
$V \rightarrow loves$	$N \rightarrow dog$
$V \rightarrow hates$	$N \rightarrow cat$
$V \rightarrow eats$	$N \rightarrow rat$

Each production says how to modify strings by substitution

• $x \rightarrow y$ says, substring x may be replaced by y.

2. The Language of the Grammar:

If G(V, T, P, S) is a CFG, then the language of G is $L(G) = \{w \text{ in } T^* | S \stackrel{*}{\Rightarrow}_G w\}$ i.e., the set of strings over T derivable from the start symbol. If G is a CFG, then L(G) a context-free language.

3. Derivation:

A derivation is a sequence of rewriting operations that starts with the string $\sigma = S$ and then repeats the following until σ contains only terminals.

A *left-most derivation* $(\underset{lm}{\Rightarrow})$ is one in which the left-most non-terminal is always chosen as the next non-terminal to expand(Always replace the left-most variable by one of its rule-bodies).

A right-most derivation (\Longrightarrow) is one in which the right-most non-terminal is always chosen as the next non-terminal to expand(Always replace the rightmost variable by one of its rule-bodies).

$E \rightarrow E+T$,	$E \rightarrow T$,	$T \rightarrow id$

Derivations for id + id:

LEFTMOST	RIGHTMOST
$E \Rightarrow E+T$	$E \Rightarrow E+T$
\Rightarrow T+T	⇒E+ id
\Rightarrow id+T	\Rightarrow T+id
\Rightarrow id+id	⇒ id+id

⇒*is the transitive closure of ⇒. If $\alpha \Rightarrow *\beta$ holds, then α can be derived to β . The sequence $\alpha \Rightarrow \cdots \gamma \cdots \Rightarrow \beta$ is called the derivation of α to β . In the same sense \Rightarrow *LM is the transitive closure of \Rightarrow *LM*.

This transitive closure can also be expressed as tree. Whenever a production is applied on a nonterminal, its node expands in the tree. Every symbol on the right-hand-side of the production becomes a child of this node. The advantage is that the order in which productions are applied does not matter and always result in the same tree. Such a tree is called a *derivation tree*.

Example 3: Recall the CFG for equal 0's and 1's:

$$S \rightarrow 0S1S \mid 1S0S \mid \epsilon$$

The derivation for 011100

 $\mathbf{S} \Rightarrow 0\underline{\mathbf{S}}\mathbf{1}\mathbf{S} \Rightarrow 0\mathbf{1}\underline{\mathbf{S}} \Rightarrow 0\mathbf{1}\mathbf{\underline{S}} \Rightarrow 0\mathbf{1}\mathbf{1}\underline{\mathbf{S}}\mathbf{0}\mathbf{S} \Rightarrow 0\mathbf{1}\mathbf{1}\mathbf{1}\underline{\mathbf{S}}\mathbf{0}\mathbf{S}\mathbf{0}\mathbf{S}$

 $\Rightarrow 01110\underline{S}0S \Rightarrow 011100\underline{S} \Rightarrow 011100$

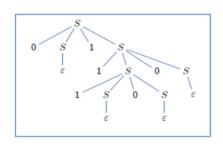
Here is derivation tree for 011100

Example 4:

The grammar: $S \rightarrow aABe$, $A \rightarrow Abc \mid b$, $B \rightarrow d$

The right most derivation for **<u>abbcde</u>** is as follow:

 $S \Longrightarrow_{rm} aA \underline{B} e \Longrightarrow_{rm} a\underline{A} de \Longrightarrow_{rm} a\underline{A} bcde \Longrightarrow_{rm} abbcde$



Exercise 1:

Consider the following grammar G:

$$\begin{split} & S \to XY \\ & X \to aX \mid \! bX \mid a \\ & Y \to Y \mid Y \mid b \mid a \end{split}$$

(a) Give a leftmost derivation of abaabb.

(b) Build the derivation tree for the derivation in part (1).

(c) What is L(G)?

4. Right- or Left-Linear Grammar:

Linear Grammar: A grammar in which each production contains at most one nonterminal in its right-hand side of any production.

Right-linear grammar (Definition): G = (V, T, S, P) is said to be right-linear if all productions are of the form: A \rightarrow xB, A \rightarrow x, where A, B \in V and x \in T*.

Left-linear grammar (Definition): G = (V, T, S, P) is said to be left-linear if all productions are of the form: $A \rightarrow Bx$, $A \rightarrow x$, where $A, B \in V$ and $x \in T^*$.

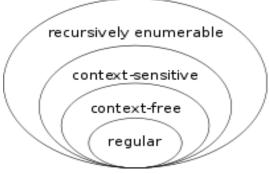
Example 1:

Find L(G) where G = ({S, S1, S2}, {a, b}, S, P) with $S \rightarrow S1ab$, $S1 \rightarrow S1ab \mid S2$, $S2 \rightarrow a$. **Answer**: This is a left-linear grammar. $S \Rightarrow S1ab \Rightarrow S1abab \Rightarrow S2abab \Rightarrow aabab$. Then L(G) = {aabw |w \in (ab)*}.

5. Hierarchy of Grammars (Chomsky Hierarchy):

The Chomsky hierarchy classifies grammars according to syntactic restrictions on rules as following. Let $G = (\sum, V, S, P)$ be a grammar.

- 1. G is called a **Type-0** grammar or an **unrestricted** grammar.
- 2. G is called a **Type-1** or **context-sensitive** grammar.
- 3. G is called a **Type-2** or **context-free** grammar.
- 4. G is called a **Type-3** or **regular** grammar.



<u>1 An Unrestricted Grammar:</u>

A set of production rules of the form $\alpha \rightarrow \beta$ where α and β are arbitrary strings of terminal and non-terminal symbols. The rules of these grammars do not have the restriction above, their left-hand sides may contain any string of terminal and /or non-terminal symbols, provided there is at least one non-terminal symbol.

Example 2:

 $L = \{w \in \{a, b, c\}^+ : number of a's, b's and c's is the same\}$

 $S \rightarrow ABCS$ $S \rightarrow ABC$ $AB \rightarrow BA$ $BC \rightarrow CB$ $AC \rightarrow CA$ $BA \rightarrow AB$ $CA \rightarrow AC$ $CB \rightarrow BC$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$

Exercise 1: what is the language of the following grammar?

 $S \rightarrow aBSc$

- $S \rightarrow aBc$
- $Ba \rightarrow aB$
- $Bc \rightarrow bc$
- $Bb \rightarrow bb$

Exercise 2: Let G be the grammar $\langle N, \Sigma, P, S \rangle$, where $N = \{S\}, \Sigma = \{a, b\}$, and P are $S \rightarrow \epsilon$, $S \rightarrow aSbS$.

a. Find all the strings that are directly derivable from SaS in G.

b. Find all the derivations in G that start at S and end at ab.

c. Find all the sentential forms (sequences) of G of length 4 at most.

Exercise 3: Find all the derivations of length 3 at most that start at S in the grammar $\langle N, \Sigma, P, S \rangle$ whose production rules are:

 $S \rightarrow AS$ aS $\rightarrow bb$ A $\rightarrow aa$

<u>2 A Context-Sensitive Grammar (CSG):</u>

A production rules of the grammar have the form $\alpha \rightarrow \beta$ and $|\beta| \ge |\alpha|$, i.e. no production rule is length-decreasing.

A language L is context-sensitive if it is generated by some context-sensitive grammar.

Context-Sensitive grammars may have more than one symbol on the left-hand-side of their grammar rules, provided that at least one of them is a non-terminal and the number of symbols on the left-hand-side does not exceed the number of symbols on the right-hand-side.

Example3: The following grammar is context-sensitive (CSG).

 $S \rightarrow aBCT|aBC$ $T \rightarrow ABCT|ABC$ $BA \rightarrow AB$ $CA \rightarrow AC$ $CB \rightarrow BC$ $aA \rightarrow aa,$ $aB \rightarrow ab$ $bB \rightarrow bb,$ $bC \rightarrow bc$ $cC \rightarrow cc$

Example 4: The following grammar is context-sensitive.

$$\begin{split} S &\to aTb \mid ab \\ aT &\to aaTb \mid ac. \end{split}$$
What is the language of the grammar? $\{ab\} \ U \ \{a^{n+1}cb^{n+1} \mid n \geq 0\}. \ This \ language \ is \ context-free, \ it \ has \ the \ grammar \\ S &\to aTb \mid ab, \ and \ T \to aTb \mid c. \ Any \ context-free \ language \ is \ context \ sensitive. \end{split}$

<u>3 A Context-Free Grammar (CFG):</u>

A production rules of the grammar have the form $\alpha \rightarrow \beta$, each production in P satisfies:

 $|\alpha|=1$; i.e., α is a single nonterminal.

A language generated from a context-free grammar is called a context-free language. Any context-free language is context sensitive.

The grammars are called context free because – since all rules only have a nonterminal on the left-hand side – one can always replace that nonterminal symbol with what is on the right-hand side of the rule.

Example 5: $\{a^nb^nc^n \mid n \ge 0\}$ is context-sensitive but not context-free.

Here is a CSG.

```
S \rightarrow \mathcal{E} \mid abc \mid aTBcT \rightarrow abC \mid aTBCCB \rightarrow BCB \rightarrow b.C \rightarrow c.
```

Derive aaabbbccc.

```
S \Rightarrow aTBc \Rightarrow aaTBCBc \Rightarrow aaabCBCBc \Rightarrow aaabBCCBc \Rightarrow aaabbCCBc \Rightarrow aaabbCCBc \Rightarrow aaabbBCCc \Rightarrow aaabbbCCcc \Rightarrow aaabbbCcc \Rightarrow aaabbbCcc \Rightarrow aaabbbccc.
```

Example 6:

Let $L(G1) = \{0^n1^n | n \ge 0\}$ and $L(G2) = \{0^n \# 1^n | n \ge 0\}$. Given two CFLs, it is easy to construct a CFG for their **union**, e.g., combining CFGs for L(G1) and L(G2):

$$\begin{split} S &\rightarrow S_1 \mid S_2 \\ S_1 &\rightarrow 0S_11 \mid \epsilon \\ S_2 &\rightarrow 0S_21 \mid \# \\ \underline{Example \ 7:} \\ S &\rightarrow abS \end{split}$$

 $S \rightarrow a$ L(G)=(ab)*a

4 Regular Grammar:

G is a *Type-3* or *right-linear* or *regular grammar* if each production has one of the following three forms: $A \rightarrow cB$, $A \rightarrow c$, $A \rightarrow c$; where A, B are non-terminals (with B = A allowed) and c is a terminal.

The **regular languages** are subset of the context-free languages.

Such a grammar restricts its rules to a <u>single nonterminal</u> on the <u>left-hand side</u>. The a <u>right-hand</u> <u>side</u> consisting of <u>a single terminal</u>, possibly <u>followed</u> (or <u>preceded</u>, but not both in the same grammar) by a single nonterminal.

Regular languages can be considered as special types of **context free languages**, i.e. all regular languages are CF languages but not all CF languages are regular.

Example 8:

The following grammar is unrestricted.

$$\begin{split} S &\to TbC \\ Tb &\to c \\ cC &\to Sc \mid E \end{split}$$

This grammar is not context-sensitive, not context-free, and not regular. But can transform it into $S \rightarrow Sc \mid E$. So, the language of the grammar is regular.

Regular grammar generates regular languages as in following examples:

Example 9:

 $S \rightarrow Aab$ $A \rightarrow Aab|B$ $B \rightarrow a$ L(G)=aab(ab)*

Example 10:

The CFG ({S}, {a, b}, S, P) with P consisting of the following productions:

 $S \rightarrow aSb$ $S \rightarrow \epsilon$

The grammar is not regular because of the b on the right of S.

It generates the language $a^n b^n$ where $n \ge 0$. This is not a regular language but it can be generated by a context free grammar is therefore a context free language.

Exercise 1:

 $G = (\{S\}, \{0, 1\}, \{S \to 0S1|\epsilon\}, S)$

- Is ϵ in L(G)?
- Is 01 in L(G)?
- Is 0011 in L(G)?
- Is 0ⁿ1ⁿ in L(G)?

What language is defined by the following G?

```
S \rightarrow \epsilon
```

 $S \rightarrow 0S1$

What language is defined by the following G?

 $S \rightarrow \epsilon$

 $S \rightarrow 0S0$

 $S \rightarrow 1S1$

Exercise 2:

What is language generated by this grammar G given by the productions

$\begin{array}{l} S \rightarrow 0S0 \mid 0B0 \\ B \rightarrow 1B \mid 1 \end{array}$