

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 1 of 8

 The Classic First Program

Here is a version of the classic first C++ program. It writes “Hello, World!” to your screen:

Consisting of just seven lines of code, this small program contains everything we need to

look at the basic of a C++ program. We are going to cover each aspect of this program in

more details. The aim of this program is to familiarize ourselves with some core concepts

before covering them in more detail as we progress.

Before our program get much more complicated, we should see how C++ handles comments.

Comments help the human readers of our program. They are typically used to summarize an

algorithm, identify the purpose of a variable, or clarify an otherwise obscure segment of code.

The compiler ignores comments, so they have no effect on the program behaviour or

performance.

There are two kinds of comments in C++: single-line and paired. A single-line comment

starts with a double slash (//) and ends with a newline. Everything to the right of the slashes

on the current line is ignored by the compile. A comment of this kind can contain any text,

including additional double slashes. The other kind of comments uses two delimiters (/* and

/). The compiler treats everything that falls between the / and */ as part of the comment.

Starting for the top, we have a pre-processor directive:

The include directive is a very common directive that you’ll see in most C++ files, and it

means “copy here”. So, in this case, we’re going to copy the contents of iostream file into

our application, and in doing so, allow ourselves to use input/output functionality it provides.

Next, we have our entry point, main().

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 2 of 8

The main() function is where your C++ program will kick-off. All programs will have this

function defined and it marks the start of our application-the first code that will be run. This

typically your outer-most loop because as soon as the code in this function is complete, your

application will close.

Next, we have an IO statement that will output some text to the console:

Because we have included the iostream header at the start of our program, we have access to

various input and output functionality. In this case, std::cout allows us to send the text to the

console, so when we run our program, we see that the text “Hello World!” is printed.

Finally, we have a return statement:

This signals that we’re done in the current function. The value that you return will depend on

the function, but in this case, we return 0 to denote that the application run without error.

Keywords

Keywords are words that are reserved by C++. Thus, we cannot use them in our program for

anything other than their intended purposes. For example, a common keyword is “if”. So you

would not be able to define a variable or function of that name. it’s these keywords that

structure the C++ language, and it’s through their use that we instruct our program on what it

should be doing. Some of these words define basic data types, some of them are statements to

define program flow, and others define object and scope.

Variables

We can do nothing of interest with a computer program without storing data in memory. The

places in which we store data are called objects. To access and object we need a name. a

named object is called a variable and has a specific data type. The type of a variable

determines what can be put into it and which operation can be applied to it. The data items

we put into variables are called values. A statement that defines a variable is called a

definition and definition can provide an initial value. We can visualize variables like this:

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 3 of 8

Note that you can not put values of the wrong type into a variable.

Data Types

As we have learned, we store data in variables. For example, name, age, or the price of food

items. Given these are different types of data: alphabetical, numerical, and so on, we store

them in different variable types. It’s these types that we’re going to be taking a look at now,

as it’s important to use the correct variable types for the data you want to store.

Built-In Types

Now we can look at the core set of fundamental data types that C++ provides us with. These

types will serve your need most of the time, and you don’t need to do anything special to use

them; they’re part of the language. These built-In types are as follows:

• bool: the bool type stores either a true (non-zero) or false (0) value and has a size of

one byte.

• int: the int type is used to store integers and is typically four bytes in size.

• char: the char type is used to store a single character. this data type is one byte in size.

• float: the float type represents single-precision floating-point numbers and is typically

4 bytes in size.

• double: the double type represents double-precision floating-point numbers and is

typically 8 bytes in size.

• void: the void type is a special type that denotes an empty value. You cannot create

objects of the void type. However, it can be used by pointers and functions to denote

an empty value, for example, a void pointer that points to nothing, or a void function

that doesn’t return anything.

Type Modifiers

Type modifiers allow us to change the properties of the built-in data types. The following

modifiers are available to us:

• signed: the signed keyword specifies that our variable can hold both positive and

negative values.

• unsigned: the unsigned keyword specifies that our variable should only hold positive

values.

• long: the long keyword ensures that our variable will be at least the size of an int,

typically will be 4 bytes.

• long long (C++11): the long long keyword, added in C++ 11, ensures that our

variable will be greater in size than long; typically, this will be 8 bytes.

• short: the short keyword ensure that our variable has the smallest memory footprint it

can.

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 4 of 8

Note: the exact size of data types depends on factors such as the architecture that you’re

working with and what compiler flags are set.

Reference Table

Here is a table of the basic data types provided by C++ with a selection of type modifiers:

Declaring Data Types

In this section we are going to declare a number of different variables, with and without type

modifiers, and print out their size using the sizeof operator. Here are the steps to complete the

exercise:

1. we’ll start by defining a number of variables using three of the types form preceding

table:

2. the sizeof operator will give us the size of our variables in bytes. For each variable

defined previously, add an output statement that will print its size:

3. the complete code looks like this:

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 5 of 8

Conventions for Naming Variables

variable name in C++ composed of letters, digits, and underscore character. The language

imposes no limit on name length. However, it must begin with either a letter or an

underscore. Variable name are case-sensitive, upper and lowercase letters are distinct.

Furthermore, reserved keywords can not be used as variable name.

Operators

We learned about the various data types provided by C++, and how we can use them to store

and represent the data within our systems. In this section, we will take a look at operators, the

mechanisms by which we assign and manipulate this data.

Operators come in many shapes and sizes, but in general, their role is to allow us to interact

with our data. Assigning a value, modifying it, or copying it, this is all done through

operators. In this section, we will cover the following operators:

1. Arithmetic operators: arithmetic operators are those that allow us to perform

mathematical operations on our data. These are very self-explanatory and

straightforward to use. For example, in order to add a number, you simply use the “+”

sign as you would anywhere.

Let’s take a quick look at our four basic operators: addition, subtraction,

multiplication, and division. As stated previously, these four operators have the same

symbols that you’d use day to day, so they should be familiar. The following example

implements all four types of arithmetic operators:

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 6 of 8

We can use both variables and constants in these operations. They are

interchangeable. Here is an example:

In this code snippet, we add the value 4, a constant, to myInt, a variable. The outcome

of this is the addition variable will now have a value of 7.

The final arithmetic operator we’ll look at is the modulus operator. This operator

returns the remainder of an integer division and is presented by the % symbol:

2. Unary operators: the operators that we have used had a value, typically called an

operand, on either side of them: rhs and lhs. Unary operators are those operators,

however, that take only one value and modify that. We will take a look at minus (-),

increment (++), and decrement (--).

Lets start with the minus (-) operators; this allows us to manipulate the sign of a

value. It is fairly straightforward, when placed in front of a value it will turn a

negative value positive, and positive value negative.

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 7 of 8

We can see from the output that the sign of the output is opposite to that of the

variable since we’re using it with the minus operator.

The other unary operators we are going to look at are increment (++) and decrement (-

-). These two operators allow us to increase or decrease a value by one, respectively.

In the following code, we define a value, then increment or decrement it, and view its

value:

In this simple example, we have defined a value as 1, incremented it, and then

immediately decremented it again, printing its value at each stage.

3. Assignment operators: assignment operators allow us to assign values to our objects.

We have used this operator many times throughout this lecture. It is one of the most

fundamental operations in programming, but always, there is more that we can learn

about these operators. the most basic assignment operator is where we take a value

and assign it to a variable, as follows:

We are familiar with this, but what we might not be familiar with is the concept of

combining these with arithmetic operators. let’s imagine a scenario where we need to

increment a value by 5. We could do this as follows:

We take the value of myInt, and add 5 to it, and then assign it back to the original

variable. We can do this in a more refined way, however, by combining the two

operators together. The assignment operator can be preceded by an arithmetic

operator to achieve this, as follows:

University of Babylon

College of Information Technology

Department of Information Security

Programing Fundamentals

C++, First Stage

Dr. Hasanein Alharbi Page 8 of 8

This is the case for any of the arithmetic operators, they can precede an assignment

operator and their effects are combined. This can be seen in the following example

application.

Note: Relational and Logical operators will be covered with the control flow statements.

