
Return Sequence

1. The callee stores the return value near the parameters. Note that this address can
be determined by the caller using the old (soon-to-be-restored) sp.
2. The callee restores sp and the registers.
3. The callee jumps to the return address.

Note that varagrs are supported.

Variable-Length Data on the Stack

There are two flavors of variable-length data.

 Data obtained by malloc/new have hard to determine lifetimes and are stored in
the heap instead of the stack.
 Data, such as arrays with bounds determined by the parameters are still stack
like in their lifetimes (if A calls B, these variables of A are allocated before and
released after the corresponding variables of B).

It is the second flavor that we wish to allocate on the stack. The goal is for the
(called) procedure to be able to access these arrays using addresses
determinable at compile time even though the size of the arrays (and hence the
location of all but the first element) is not known until the program is called, and
indeed often differs from one call to the next (even when the two calls correspond
to the same source statement). The solution is to leave room for pointers to the
arrays in the AR. These are fixed size and can thus be accessed using static

offsets. Then when the procedure is invoked and the sizes are known, the
pointers are filled in and the space allocated.

A small change caused by storing these variable size items on the stack is that it no
longer is obvious where the real top of the stack is located relative to sp.
Consequently another pointer (call it real-top-of-stack) is also kept. This is used on
a call to tell where the new allocation record should begin.

Access to Nonlocal Data on the Stack

As we shall see the ability of procedure p to access data declared outside of p
(either declared globally outside of all procedures or declared inside another
procedure q) offers interesting challenges.

1. Data Access without Nested Procedures

In languages like standard C without nested procedures, visible names are
either local to the procedure in question or are declared globally.

1. For global names the address is known statically at compile time, providing
there is only one source file. If there are multiple source files, the linker knows. In
either case no reference to the activation record is needed; the addresses are
known prior to execution.
2. For names local to the current procedure, the address needed is in the AR at a
known-at-compile-time constant offset from the sp. In the case of variable size
arrays, the constant offset refers to a pointer to the actual storage.

2. Issues with Nested Procedures

With nested procedures a complication arises. Say g is nested inside f. So g can
refer to names declared in f. These names refer to objects in the AR for f; the
difficulty is finding that AR when g is executing. We can't tell at compile time
where the (most recent) AR for f will be relative to the current AR for g since a
dynamically-determined (i.e., statically unknown) number of routines could
have been called in the middle. Access links are a mechanism to access
variables defined in an enclosing procedure

Parameter Passing
Almost every language has some method for passing parameters to functions and
procedures. These mechanisms have evolved over times, and there are a number
of important differences.
The two most common methods for parameter passing in modern imperative
languages are call by value and call by reference. Call by name is primarily of
historical interest, but is closely related to the way that parameters are handled
when macros are expanded, and have the same semantics as lazy evaluation in
functional languages. Languages with input/output parameters support call by
value-result which differs subtly from call by reference
Techniques used for argument passing in traditional imperative languages:
 call by value
 call by result
 call by value-result
 call by reference
 call by name

Call by value: copy going into the procedure. This is the mechanism used by
both C and Java. Note that this mechanism is used for passing objects, where a
reference to the objected is passed by value.

Call by result: copy going out of the procedure, the formal parameters is copied
back into the actual parameters. (Note that this only makes sense if the actual
parameter is a variable, or has a l-value, such as an array element.)

Call by value result: copy going in, and again going out

Call by reference: The actual parameters and formal parameters are
identified. The natural mechanism for this is to pass a pointer to the actual
parameter, and indirect through the pointer

Call by name: re-evaluate the actual parameter on every use. For actual
parameters that are simple variables, this is the same as call by reference. For
actual parameters that are expressions, the expression is re-evaluated on each
access. It should be a runtime error to assign into a formal parameter passed by
name, if the actual parameter is an expression.
Call by value is particularly efficient for small pieces of data (such integers),
since they are trivial to copy, and since access to the formal parameter can be done
efficiently.

Call by reference is particularly efficient for large pieces of data (such as large
arrays), since they don't need to be copied. Call by reference also allows a
procedure to manipulate the values of variables of the caller, such as in a swap
routine.
FORTRAN uses call by reference, early versions of FORTRAN allowed
constants to change their values, since they were also passed by reference.
Algol 60 has call by name, call by value

Scheme, Lisp, and Smalltalk use call-by-value with pointer semantics
C generally uses call-by-value, although there are inconsistencies in the language.
In particular, compare how structures are passed, and how arrays are passed.

An important related concept: aliasing. Two variables are aliased if they refer to
the same storage location. A common way that aliasing can arise is using call by
reference. A formal parameter can be aliased to a nonlocal variable, or two formal
parameters can be aliased.

Examples

void f(int a, int &b, const int &c);

Parameter a is a value parameter, b is a reference parameter, and c is a const-
reference parameter.

When a parameter is passed by value, a copy of the parameter is made. Therefore,
changes made to the formal parameter by the called function have no effect on
the corresponding actual parameter. For example:

void f(int n) {
 n++;
}

int main() {
 int x = 2;
 f(x);
 cout << x;
}
In this example, f's parameter is passed by value. Therefore, although f increments
its formal parameter n, that has no effect on the actual parameter x. The value
output by the program is 2 (not 3).

Note that if a pointer is passed by value, then although the pointer itself is not
affected by changes made to the corresponding formal parameter, the object
pointed by the pointed can be changed. For example:

void f(int *p) {
 *p = 5;
 p = NULL;
}

int main() {
 int x=2;
 int *q = &x;

 f(q);

 // here, x == 5, but q != NULL
}

In this example, f's parameter is passed by value. Therefore, the assignment p =
NULL; in f has no effect on variable q in main (since f was passed a copy of q,
not q itself). However, the assignment *p = 5:in f, does change the value pointed to
by q. To understand why, consider what happens when the example program runs:

After executing the two statements:
 int x=2;
 int *q = &x;

memory looks like this:

 +---+
 x: | 2 | <--+
 +---+ |
 |
 +---+ |
 q: | --|----+
 +---+

Now function f is called; the value of q (which is the address of x) is copied into a
new location named p:

 +---+
 x: | 2 | <--+ <--+
 +---+ | |
 | |
 +---+ | |
 q: | --|----+ |
 +---+ |
 |
 +---+ |
 p: | --|----------+
 +---+

Executing the two statements in f:
 *p = 5;
 p = NULL;

causes the values of x (the thing pointed to by p) and p to be changed:

 +---+
 x: | 5 | <--+
 +---+ |
 |
 +---+ |
 q: | --|----+
 +---+

 +----+
 p: |NULL|
 +----+

However, note that q is NOT affected.

When a parameter is passed by reference, conceptually, the actual parameter
itself is passed (and just given a new name -- the name of the corresponding
formal parameter). Therefore, any changes made to the formal
parameter do affect the actual parameter. For example:

void f(int &n) {
 n++;
}

int main() {
 int x = 2;
 f(x);
 cout << x;
}
In this example, f's parameter is passed by reference. Therefore, the assignment
to n in f is actually changing variable x, so the output of this program is 3.

Another common use of reference parameters is for a function that swaps two values:

void swap(int &j, int &k) {
 int tmp = j;
 j = k;
 k = tmp;
}

This is useful, for example, in sorting an array, when it is often necessary to swap two
array elements. The following code swaps the jth and kth elements of array A:

swap(A[j], A[k]);

