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2.1 Number Systems 

A digital system can understand the positional number system only where there 

are a few symbols called digits and these symbols represent different values 

depending on the position they occupy in the number. 

     The value of each digit in a number can be determined using: 

A. The digit. 

B. The position of the digit in the number. 

C. The base of the number system (where the base is defined as the total 

number of digits available in the number system).  

 

2.2 Types of the Number System in Computer 

There are mainly four types of the number system in computer: 

1. Binary Number System: The binary number system is the most 

fundamental number system used in computer science. It uses only 

two digits, 0 and 1, to represent all numbers and data. 

2. Decimal Number System: The decimal number system is also used 

in computer science, but it is not as fundamental as the binary 

system. It uses ten digits, 0 through 9, to represent numbers. 

3. Octal Number System: The octal number system uses eight digits, 

0 through 7, to represent numbers. It is commonly used in 

computer programming and digital electronics. 

4. Hexadecimal Number System: The hexadecimal number system 

uses 16 digits, including 0 through 9 and A through F, to represent 

numbers. It is often used in computer programming and digital 

electronics. 
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2.3 Conversion of the Number System  

Each one of the four different types can be converted into the remaining three 

systems. There are the following conversions possible in Number System: 

 

 

 

 

 

 

 

 

2.4 Binary-to-Decimal Conversion 

Decimal  

Base 10 

Binary 

Base 2 

Octal 

Base 8 

Hex 

Base 16 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 
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Example: Convert the binary whole number 101012 to decimal. 

Sol. 

                    24       23       22      21       20 

                    1        0        1        0        1 

101012 = ((1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10  

= (16 + 0 + 4 + 0 + 1)10 = 2110  

Example: Convert the fractional binary number 0.1011 to decimal. 

Sol. 

                    Weight:           2-1       2-2      2-3       2-4 

        Binary number:        0.1          0        1         1         

        0.1011 = 2-1 + 2-3 + 2-4 = 0.5 + 0.125 + 0.0625 = 0.6875 

 

2.5 Decimal-to-Binary Conversion 

Example:  Decimal number: 2910. Calculating binary equivalent. 

Sol. 

Using the Repeated Division method.  

29 / 2 = 14    Remainder   1  (LSB) 

14 / 2 = 7      Remainder   0 

7 / 2 = 3        Remainder   1 

3 / 2 = 1        Remainder   1 

1 / 2 = 0        Remainder   1  (MSB)          (2910) = (111012) 

Example:  Convert the following decimal numbers to binary: (a) 19 (b) 45. 

Sol. 
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2.6 Binary Arithmetic 

Binary arithmetic is essential in all types of digital systems. To understand these 

systems, you must know the basics of binary addition, subtraction, multiplication, 

and division. 

 

2.7 Binary Addition  

The four basic rules for adding binary digits (bits) are as follows: 

 

 

 

Example (1): Add 11 + 1 

Sol. 

                                                Carry Carry 
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                                                    1        1 

                                                    0        1        1 

                                               +   0        0        1 

                                                    1        0        0   

 

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the 

left. In the middle column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to 

the left. In the left column, 1 + 0 + 0 = 1. 

Carry bits 

1 + 0 + 0 = 01 Sum of 1 with a carry of 0 

1 + 1 + 0 = 10 Sum of 0 with a carry of 1 

1 + 0 + 1 = 10 Sum of 0 with a carry of 1 

1 + 1 + 1 = 11 Sum of 1 with a carry of 1 

Example (2): Add 111 + 11 

Sol. 

                                                       Carry Carry                   

                                                           1       1 

                                                           1       1       1 

                                                 +                 1       1 

                                                   1       0       1       0 
 

 

 

 

 

 

 

 

 

 

 

 

 

2.8 Binary Subtraction  

The four basic rules for subtracting bits are as follows: 
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When subtracting numbers, you sometimes have to borrow from the next 

column to the left. A borrow is required in binary only when you try to subtract a 

1 from a 0. In this case, when a 1 is borrowed from the next column to the left,      

a 10 is created in the column being subtracted, and the last of the four basic rules 

just listed must be applied. 

Example: Subtract 0112 from 1012. 

Sol.     

Left column:                                                        Middle column: 

When a 1 is borrowed,                                        Borrow 1 from next column 

 a 0 is left, so 0 - 0 = 0.                                        to the left, making a 10 in 

                                                                             this column, then 10 - 1 = 1.                                                 

                                                 1  1 0    1  

                                    -  0     1    1             

                                                 0     1    0 

 

 

 

 

2.9 Binary Multiplication  

The four basic rules for multiplying bits are as follows: 
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  10 

Partial 

products 

 

 

 

Example: Perform the following binary multiplications: 

112 ×  112              

Sol. 

112 ×  112               

          1   1 

                ×      1   1 

                                         1  1 

                                  + 1  1   

                                 1  0  0  1        

 

2.10 Binary Division  

Division in binary follows the same procedure as division in decimal 

  Example: Perform the following binary divisions:         1102 ÷ 112               

Sol.                                     

                                                                                                                                   

    11     1 1 0         

     

2.11 One’s complement representation 

Complementing a number is a technique where all the digits of the number are 

reversed. A signed binary number can be represented in 1’complement by 

1 1    -   

0 0 0 
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changing all the 0’s to 1 and 1’s to 0 (i.e. Change each bit in a number to get the 

1’s complement).  

Example: Find the 1’s complement of 00010011. 

Sol. 

Change each bit in a number to get the 1’s complement. The 1’s complement of 

a binary number is found by changing all 1s to 0s and all 0s to 1s, as illustrated 

below:   

0 0 0 1 0 0 1 1 Binary number 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  

1 1 1 0 1 1 0 0 1's complement 

 

2.12 Two’s complement representation 

The 2’s complement of a binary number is found by adding 1 to the LSB of the 

1’s complement. The following steps are used to represent in the 2’s complement 

method: 

1. If the given number is positive, it is converted to its binary equivalent. If 

the given number is negative, the positive value of the number in binary is 

chosen. 

2. Now the number is converted to its 1’s complement form. 

3. Finally, 1 is added to the 1’s complement form. 

 

 

Example: Represent −2 in 2’s complement. 

Sol. 

2 = 0 0 1 0  
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  1 1 0 1     1’s complement 

+     1 results in 2’s complement 

  

  1 1 1 0 = -2 

 

2.13 Digital Codes 

Coding is a process of using a specific group of characters, alphabets, symbols, or 

numbers to represent specific information. The digital data are represented, stored, 

and transmitted as a group of binary bits. This group of binary bits is also called 

as the binary code. The binary codes represent numbers as well as alphanumeric 

letters. They are widely used for analyzing and designing digital circuit since only 

0 and 1 are being used, which can be implemented easily. Many specialized codes 

are used in a digital system. They are as follows: 

 

■ Weighted codes 

■ Non-weighted codes 

■ Binary coded decimal code 

■ Alphanumeric codes 

■ Error detecting codes 

■ Error correcting codes 

 

Weighted binary codes are those binary codes which have a specific weight 

for each position of the given number. Each decimal digit of the given number is 

represented as a group of 4-bit number. Several systems of the codes are used to 

express the decimal digits 0 through 9. The weighted codes are 8421 code, 84-2-1 

code, 2421 code, and 5211 code. The negative sign is represented as a bar on the 

number. 
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2.14 Binary Coded Decimal (BCD)  

Binary coded decimal (BCD) is a way to express each of the decimal digits with a 

binary code. There are only ten code groups in the BCD system, so it is very easy 

to convert between decimal and BCD. Because we like to read and write in 

decimal, the BCD code provides an excellent interface to binary systems. 

Examples of such interfaces are keypad inputs and digital readouts. The binary 

coded decimal code, abbreviated as BCD, is a method that uses binary digits “0” 

and “1”. ON state represents “1” and OFF state represents “0”. Totally they can 

represent 16 numbers (0000–1111), bute in BCD code, only 10 of these are used. 

The remaining six code combinations are invalid in BCD. The commonly used 

BCD codes include 8421BCD code, 5421BCD code, 2421BCD code, and excess-

3 code. Some codes In the table below such as 8421, 5421, and 2421 codes, are 

weighted codes, while some codes, such as excess-3 code, are nonweighted codes. 

In a weighted code, each digit position has a weight and the sum of all digits 

multiplied by their weight represents its corresponding decimal number. In a 

nonweighted code, no specific weights are assigned to bit position. 

 

Table below commonly used BCD codes. 

 

 

 

 

 

2.15 The 8421 BCD code  

The 8421 BCD code is the most commonly used BCD code. Each digit is called a 

bit. The designation 8421 indicates the binary weights of the four bits (23, 22, 21, 
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20). 4-bits are called nibble and are used to represent each decimal digit (0 through 

9). This coding system has been used since the first computer. This coding system 

deals with decimal and binary numbers. The ease of conversion between 8421 

code numbers and the familiar decimal numbers is the main advantage of this code. 

All you have to remember are the ten binary combinations that represent the ten 

decimal digits as shown in the table below. The 8421 code is the predominant 

BCD code, and when we refer to BCD, we always mean the 8421 code unless 

otherwise stated. 

 

 

 

Note: 

From four bits, sixteen numbers (0000 through 1111) can be represented but 

that, in the 8421 code, only ten of these are used. The six code combinations 

that are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 

8421 BCD code. To express any decimal number in BCD, simply replace each 

decimal digit with the appropriate 4-bit code, as shown by Example: 

Example: Convert each of the following decimal numbers to BCD :(a) 35, (b) 98      

Sol. 

(a)                                                                         (b) 

 

 

Related Problem 

Convert the decimal number 9673 to BCD 

 

     9          8 

 

 

 1001 1000 

     3          5                

 

 

 0011  0101 
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2.16 The 5421 and 2421 BCD codes  

The 5421 and 2421 BCD codes are weighted codes too, and their weights 

from MSB to LSB are 5, 4, 2, 1 and 2, 4, 2, 1, respectively. For the 5421 and 2421 

BCD codes, one decimal digit may be represented by different binary numbers. 

For instance, 5 can be represented by either 1011 or 0101 in the 2421 BCD code; 

likewise, 5 can be represented by either 1000 or 0101 in the 5421 BCD code. 

However, the 5421 and 2421 BCD codes in the table listed in section 2.14 have 

been generally accepted, and other forms are no longer used. In addition, it can be 

observed that in BCD 2421*, the code for decimal 0 is the complement of the code 

for decimal 9; this also holds true for the codes for decimal 1 and 8, 2 and 7, 3 and 

6, and 4 and 5. This property is called the nine’s complement of a decimal number, 

that is, bitwise complementation of a code will produce the nine’s complement of 

the decimal number, which makes hardware implementation of arithmetic 

operations much simpler in digital systems. 

 

2.17 The Excess-3 Code  

           The excess-3 code is a nonweighted code used to express decimal numbers. 

The Excess-3 code is derived from the 8421 BCD code adding (0011)2 or (3)10 to 

each code in 8421 BCD. When the addition of two excess-3 codes produces              

a carry, the carry signal can be directly obtained from the MSB. In addition, 

excess-3 code also has the property of the nine’s complement of the decimal 

number, and has been commonly used in the arithmetic operation circuitry of BCD 

codes. There are only ten codes in the BCD system, and so it is very easy to convert 

between decimal number and BCD. To convert any decimal number in BCD, 

simply replace each decimal digit with the corresponding four-bit binary code. To 

convert a BCD number to a decimal, you can break the code into groups of four 
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bits, starting from the LSB, and then write the corresponding decimal digit 

represented by each four-bit group. 

Example: Covert the following decimal numbers to the 8421 BCD codes and the 

excess-3 codes, respectively. 

(a) 15             (b) 276  

Sol. 

Decimal (a) 1       5  (b) 2 7 6 

         

8421 BCD    0001   0101   0010 0111 0110 

         

Excess-3  0100   1000   0101 1010 1001 

 

 

Example: Covert the following the 8421 BCD codes to decimal numbers.  

(a) 10010100       (b) 000110000110 

Sol. 

8421 BCD (a)  1001 0100  (b) 0001 1000 0110 

          

Decimal   9 4   1 8 6 

 

 

Advantages of BCD Codes 

 BCD coding is similar to the binary equivalent of decimal numbers 0–9. 
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 BCD has no limitation for number size. 

 It is easier to convert decimal numbers from or to BCD than to binary 

form. 

Disadvantages of BCD Codes 

 Each decimal number requires four bits to be represented in the BCD 

code. 

 Arithmetic operations in BCD or weighted codes are much complicated as 

it deals with more number of bits and also it has different set of rules. 

 BCD is less efficient than binary. 

Applications 

 They are mainly used to give instructions to microcomputers. 

 It is used for interfacing devices. 

 It is used in the transfer of information from keyboards to computer 

displays and printers. 
 

2.18 Error Codes        

In this section, three methods for adding bits to codes to detect a single-bit error 

are discussed. The parity method of error detection is introduced, and the cyclic 

redundancy check is discussed. Also, the Hamming code for error detection and 

correction is presented. 
 

2.19  Parity Method for Error Detection  
 

          Many systems use a parity bit as a means for bit error detection. Any group 

of bits contain either an even or an odd number of 1s. A parity bit is attached to a 

group of bits to make the total number of 1s in a group always even or always odd. 

An even parity bit makes the total number of 1s even, and an odd parity bit makes 

the total odd.   

          A given system operates with even or odd parity, but not both. For instance, 

if a system operates with even parity, a check is made on each group of bits 

received to make sure the total number of 1s in that group is even. If there is an 

odd number of 1s, an error has occurred. 

          As an illustration of how parity bits are attached to a code, table below lists 

the parity bits for each BCD number for both even and odd parity. The parity bit 

for each BCD number is in the P column.      
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The parity bit can be attached to the code at either the beginning or the end, 

depending on system design. Notice that the total number of 1s, including the 

parity bit, is always even for even parity and always odd for odd parity. 

 

2.20 Detecting an Error  

A parity bit provides for the detection of a single bit error (or any odd number of 

errors, which is very unlikely) but cannot check for two errors in one group. For 

instance, let’s assume that we wish to transmit the BCD code 0101. (Parity can be 

used with any number of bits; we are using four for illustration.) The total code 

transmitted, including the even parity bit, is 

 

 

 

 

 

 

 

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes 

a 0). 

 

 

 

 

When this code is received, the parity check circuitry determines that there 

is only a single 1 (odd number), when there should be an even number of 1s. 

Because an even number of 1s does not appear in the code when it is received, an 

error is indicated. 
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An odd parity bit also provides in a similar manner for the detection of            

a single error in a given group of bits. 

 
 

2.21 Error Codes  

It is impossible to avoid the interference of noise, which causes errors in the 

received binary data at other systems. The bits of the data may change (either 0 to 

1 or 1 to 0) during transmission. Therefore error detection and correction code play 

an important role in the transmission of data from one source to another. There are 

four method for detect errors: 

 

 

 

 

 

 

 

 

 

 

 

2.22 Parity Method for Error Detection Binary  

There are two parity methods, even and odd. In the even parity method, the value 

of the bit is chosen so that the total number of 1s in the transmitted signal, 

including the parity bit, is even. Similarly, with odd parity, the value of the bit is 

chosen so that the total number of 1s is odd. 

Even parity (ep): makes the total no. of 1΄s even 

Odd parity (op): makes the total no. of 1΄s odd 

 

 

 

Example: Assign the proper even parity bit to the following code groups:                        

(a) 1010     (b) 111000     (c) 101101      (d) 1000111001001    (e) 101101011111  

Sol.  
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Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. 

The parity bit will be the left-most bit (color). 

(a) 01010  (b) 1111000  (c) 0101101  (d) 0100011100101  (e) 1101101011111 

 

Example: An odd parity system receives the following code groups: 10110, 11010, 

110011, 110101110100, and 1100010101010. Determine which groups, if any, 

are in error. 

 

Sol. 

 Since odd parity is required, any group with an even number of 1s is incorrect. 

The following groups are in error:       

110011 and 1100010101010. 

2.23 Checksum Method  

Checksums are similar to parity bits except, the number of bits in the sums is larger 

than parity and the result is always constrained to be zero. That means if the 

checksum is zero, an error is detected. A checksum of a message is an arithmetic 

sum of codewords of a certain length. The sum is stated by means of 1’s 

complement and stored or transferred as a code extension of the actual code word. 

At the receiver, a new checksum is calculated by receiving the bit sequence from 

the transmitter. 

Checksum of messages = M1 + M2 + M3 + M4 + …   = 0 0 0 0 0 

 

Example: If k = 4 and n = 8, find the checksum of four segments: (10110011  

10101011   01011010   11010101), along with each transmitted message, the 

checksum of all the messages are also transmitted. 

 

 

 

Sol.         

       k (number of messages) = 4,     n (number of bits) = 8 
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                         10110011                                      10110011    

                         10101011                                      10101011     

                         01011110                                      01011110 

                                       1                                                    1 

                         01011111                                     01011111 

                         01011010                                     01011010 

                         10111001                                     10111001 

                         11010101                                     11010101 

                         10001110                                     10001110       

                                       1                                                   1 

           Sum:     10001111                                      10001111 

  Checksum:     01110000                                     01110000                    

                                                                    Sum:  11111111 

                                                     Complement = 00000000 

                                                     Conclusion = Accept data 

      At sender side                                    At receiver side 

 

 

2.24 Cyclic Redundancy Check (CRC)  

In cyclic redundancy code (CRC), the transmitted bit sequence is: 

                                  TX                                               RX 

                  Series data + CRC data                       data + CRC data 

The transmitted CRC is compared with the RX CRC and if they match then there 

are no errors. If they do not match then error is there. 

 

Example: Determine the transmitted CRC for the following byte of data (D) and 

generator code (G). Verify that the remainder is 0.  D: 11010011, G: 1010 
 

Sol.         

Since the generator code has four data bits, add four 0s (blue) to the data byte. The 

appended data (D´) is  

                                                D´ =110100110000 
 

Divide the appended data by the generator code (red) using the modulo-2 operation 

until all bits have been used. 
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Example: During transmission, an error occurs in the second bit from the left in 

the appended data byte generated in Example above. The received data is                  

D´ = 100100110100 Apply the CRC process to the received data to detect the error 

using the same generator code (1010). 

 

Sol. 

 

Remainder = 0100. Since it is not zero, an error is indicated. 

 

 

2.25 Hamming Code (HC)  

        The Hamming code is used to detect and correct a single-bit error in a 

transmitted code. To accomplish this, 4 redundancy bits are introduced in a 7-bit 

group of data bits. These redundancy bits are interspersed at bit positions 2n (n = 

Remainder = 0100. Since the remainder 

is not 0, append the data with the four 

remainder bits (blue). Then divide by the 

generator code (red). The transmitted 

CRC is 110100110100. 

 

 

 

 

Remainder = 0 
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0, 1, 2, 3) within the original data bits. At the end of the transmission, the 

redundancy bits have to be removed from the data bits. A recent version of the 

Hamming code places all the redundancy bits at the end of the data bits, making 

their removal easier than that of the interspersed bits. 

7-bits Hamming code is used commonly 

Parity bits = 3 bits (p1, p2, p3) 

Data bits = 4 bits (d1, d2, d3, d4) 

2P ≥ n + P +1 Position of p from (20, 21, 22) 2n where {n= 0, 1, ……., n} 

 

 

 

Example: Determine the Hamming code word (7, 4) for the transmitted data 1011 

over the noisy communication channel.

Sol. 
 

Step 1: Find parity bit to constructing bit location table. 

 

 

 

p1 = d1  d2  d4    1  0  1 = 0    

p2 = d1  d3  d4    1  1  1 = 1    

P3 = d2  d3  d4    0  1  1 = 0    

 

Step 2: Enter data in the syndrome. 

 

A = p1  d1  d2  d4    0  1  0  1 = 0    

B = p2  d1  d3  d4    1  1  1  1 = 0    

C = P3  d2  d3  d4    0  0  1  1 = 0    

CBA = 000   No errore  

p1 = d1  d2  d4   All d except d3 

p2 = d1  d3  d4   All d except d2 

P3 = d2  d3  d4   All d except d1 

Bits position 

Status P1 P2 d1 P3 d2 d3 d4

Code word 0 1 1 0 0 1 1 


