
11

2.1 Number Systems

A digital system can understand the positional number system only where there

are a few symbols called digits and these symbols represent different values

depending on the position they occupy in the number.

 The value of each digit in a number can be determined using:

A. The digit.

B. The position of the digit in the number.

C. The base of the number system (where the base is defined as the total

number of digits available in the number system).

2.2 Types of the Number System in Computer

There are mainly four types of the number system in computer:

1. Binary Number System: The binary number system is the most

fundamental number system used in computer science. It uses only

two digits, 0 and 1, to represent all numbers and data.

2. Decimal Number System: The decimal number system is also used

in computer science, but it is not as fundamental as the binary

system. It uses ten digits, 0 through 9, to represent numbers.

3. Octal Number System: The octal number system uses eight digits,

0 through 7, to represent numbers. It is commonly used in

computer programming and digital electronics.

4. Hexadecimal Number System: The hexadecimal number system

uses 16 digits, including 0 through 9 and A through F, to represent

numbers. It is often used in computer programming and digital

electronics.

12

2.3 Conversion of the Number System

Each one of the four different types can be converted into the remaining three

systems. There are the following conversions possible in Number System:

2.4 Binary-to-Decimal Conversion

Decimal

Base 10

Binary

Base 2

Octal

Base 8

Hex

Base 16

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

13

Example: Convert the binary whole number 101012 to decimal.

Sol.

 24 23 22 21 20

 1 0 1 0 1

101012 = ((1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

= (16 + 0 + 4 + 0 + 1)10 = 2110

Example: Convert the fractional binary number 0.1011 to decimal.

Sol.

 Weight: 2-1 2-2 2-3 2-4

 Binary number: 0.1 0 1 1

 0.1011 = 2-1 + 2-3 + 2-4 = 0.5 + 0.125 + 0.0625 = 0.6875

2.5 Decimal-to-Binary Conversion

Example: Decimal number: 2910. Calculating binary equivalent.

Sol.

Using the Repeated Division method.

29 / 2 = 14 Remainder 1 (LSB)

14 / 2 = 7 Remainder 0

7 / 2 = 3 Remainder 1

3 / 2 = 1 Remainder 1

1 / 2 = 0 Remainder 1 (MSB) (2910) = (111012)

Example: Convert the following decimal numbers to binary: (a) 19 (b) 45.

Sol.

14

2.6 Binary Arithmetic

Binary arithmetic is essential in all types of digital systems. To understand these

systems, you must know the basics of binary addition, subtraction, multiplication,

and division.

2.7 Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

Example (1): Add 11 + 1

Sol.

 Carry Carry

15

 1 1

 0 1 1

 + 0 0 1

 1 0 0

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the

left. In the middle column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to

the left. In the left column, 1 + 0 + 0 = 1.

Carry bits

1 + 0 + 0 = 01 Sum of 1 with a carry of 0

1 + 1 + 0 = 10 Sum of 0 with a carry of 1

1 + 0 + 1 = 10 Sum of 0 with a carry of 1

1 + 1 + 1 = 11 Sum of 1 with a carry of 1

Example (2): Add 111 + 11

Sol.

 Carry Carry

 1 1

 1 1 1

 + 1 1

 1 0 1 0

2.8 Binary Subtraction

The four basic rules for subtracting bits are as follows:

16

0

When subtracting numbers, you sometimes have to borrow from the next

column to the left. A borrow is required in binary only when you try to subtract a

1 from a 0. In this case, when a 1 is borrowed from the next column to the left,

a 10 is created in the column being subtracted, and the last of the four basic rules

just listed must be applied.

Example: Subtract 0112 from 1012.

Sol.

Left column: Middle column:

When a 1 is borrowed, Borrow 1 from next column

 a 0 is left, so 0 - 0 = 0. to the left, making a 10 in

 this column, then 10 - 1 = 1.

 1 1 0 1

 - 0 1 1

 0 1 0

2.9 Binary Multiplication

The four basic rules for multiplying bits are as follows:

17

 10

Partial

products

Example: Perform the following binary multiplications:

112 × 112

Sol.

112 × 112

 1 1

 × 1 1

 1 1

 + 1 1

 1 0 0 1

2.10 Binary Division

Division in binary follows the same procedure as division in decimal

 Example: Perform the following binary divisions: 1102 ÷ 112

Sol.

 11 1 1 0

2.11 One’s complement representation

Complementing a number is a technique where all the digits of the number are

reversed. A signed binary number can be represented in 1’complement by

1 1 -

0 0 0

18

changing all the 0’s to 1 and 1’s to 0 (i.e. Change each bit in a number to get the

1’s complement).

Example: Find the 1’s complement of 00010011.

Sol.

Change each bit in a number to get the 1’s complement. The 1’s complement of

a binary number is found by changing all 1s to 0s and all 0s to 1s, as illustrated

below:

0 0 0 1 0 0 1 1 Binary number

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 1 1 0 1 1 0 0 1's complement

2.12 Two’s complement representation

The 2’s complement of a binary number is found by adding 1 to the LSB of the

1’s complement. The following steps are used to represent in the 2’s complement

method:

1. If the given number is positive, it is converted to its binary equivalent. If

the given number is negative, the positive value of the number in binary is

chosen.

2. Now the number is converted to its 1’s complement form.

3. Finally, 1 is added to the 1’s complement form.

Example: Represent −2 in 2’s complement.

Sol.

2 = 0 0 1 0

19

 1 1 0 1 1’s complement

+ 1 results in 2’s complement

 1 1 1 0 = -2

2.13 Digital Codes

Coding is a process of using a specific group of characters, alphabets, symbols, or

numbers to represent specific information. The digital data are represented, stored,

and transmitted as a group of binary bits. This group of binary bits is also called

as the binary code. The binary codes represent numbers as well as alphanumeric

letters. They are widely used for analyzing and designing digital circuit since only

0 and 1 are being used, which can be implemented easily. Many specialized codes

are used in a digital system. They are as follows:

■ Weighted codes

■ Non-weighted codes

■ Binary coded decimal code

■ Alphanumeric codes

■ Error detecting codes

■ Error correcting codes

Weighted binary codes are those binary codes which have a specific weight

for each position of the given number. Each decimal digit of the given number is

represented as a group of 4-bit number. Several systems of the codes are used to

express the decimal digits 0 through 9. The weighted codes are 8421 code, 84-2-1

code, 2421 code, and 5211 code. The negative sign is represented as a bar on the

number.

20

2.14 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a

binary code. There are only ten code groups in the BCD system, so it is very easy

to convert between decimal and BCD. Because we like to read and write in

decimal, the BCD code provides an excellent interface to binary systems.

Examples of such interfaces are keypad inputs and digital readouts. The binary

coded decimal code, abbreviated as BCD, is a method that uses binary digits “0”

and “1”. ON state represents “1” and OFF state represents “0”. Totally they can

represent 16 numbers (0000–1111), bute in BCD code, only 10 of these are used.

The remaining six code combinations are invalid in BCD. The commonly used

BCD codes include 8421BCD code, 5421BCD code, 2421BCD code, and excess-

3 code. Some codes In the table below such as 8421, 5421, and 2421 codes, are

weighted codes, while some codes, such as excess-3 code, are nonweighted codes.

In a weighted code, each digit position has a weight and the sum of all digits

multiplied by their weight represents its corresponding decimal number. In a

nonweighted code, no specific weights are assigned to bit position.

Table below commonly used BCD codes.

2.15 The 8421 BCD code

The 8421 BCD code is the most commonly used BCD code. Each digit is called a

bit. The designation 8421 indicates the binary weights of the four bits (23, 22, 21,

21

20). 4-bits are called nibble and are used to represent each decimal digit (0 through

9). This coding system has been used since the first computer. This coding system

deals with decimal and binary numbers. The ease of conversion between 8421

code numbers and the familiar decimal numbers is the main advantage of this code.

All you have to remember are the ten binary combinations that represent the ten

decimal digits as shown in the table below. The 8421 code is the predominant

BCD code, and when we refer to BCD, we always mean the 8421 code unless

otherwise stated.

Note:

From four bits, sixteen numbers (0000 through 1111) can be represented but

that, in the 8421 code, only ten of these are used. The six code combinations

that are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the

8421 BCD code. To express any decimal number in BCD, simply replace each

decimal digit with the appropriate 4-bit code, as shown by Example:

Example: Convert each of the following decimal numbers to BCD :(a) 35, (b) 98

Sol.

(a) (b)

Related Problem

Convert the decimal number 9673 to BCD

 9 8

 1001 1000

 3 5

 0011 0101

22

2.16 The 5421 and 2421 BCD codes

The 5421 and 2421 BCD codes are weighted codes too, and their weights

from MSB to LSB are 5, 4, 2, 1 and 2, 4, 2, 1, respectively. For the 5421 and 2421

BCD codes, one decimal digit may be represented by different binary numbers.

For instance, 5 can be represented by either 1011 or 0101 in the 2421 BCD code;

likewise, 5 can be represented by either 1000 or 0101 in the 5421 BCD code.

However, the 5421 and 2421 BCD codes in the table listed in section 2.14 have

been generally accepted, and other forms are no longer used. In addition, it can be

observed that in BCD 2421*, the code for decimal 0 is the complement of the code

for decimal 9; this also holds true for the codes for decimal 1 and 8, 2 and 7, 3 and

6, and 4 and 5. This property is called the nine’s complement of a decimal number,

that is, bitwise complementation of a code will produce the nine’s complement of

the decimal number, which makes hardware implementation of arithmetic

operations much simpler in digital systems.

2.17 The Excess-3 Code

 The excess-3 code is a nonweighted code used to express decimal numbers.

The Excess-3 code is derived from the 8421 BCD code adding (0011)2 or (3)10 to

each code in 8421 BCD. When the addition of two excess-3 codes produces

a carry, the carry signal can be directly obtained from the MSB. In addition,

excess-3 code also has the property of the nine’s complement of the decimal

number, and has been commonly used in the arithmetic operation circuitry of BCD

codes. There are only ten codes in the BCD system, and so it is very easy to convert

between decimal number and BCD. To convert any decimal number in BCD,

simply replace each decimal digit with the corresponding four-bit binary code. To

convert a BCD number to a decimal, you can break the code into groups of four

23

bits, starting from the LSB, and then write the corresponding decimal digit

represented by each four-bit group.

Example: Covert the following decimal numbers to the 8421 BCD codes and the

excess-3 codes, respectively.

(a) 15 (b) 276

Sol.

Decimal (a) 1 5 (b) 2 7 6

8421 BCD 0001 0101 0010 0111 0110

Excess-3 0100 1000 0101 1010 1001

Example: Covert the following the 8421 BCD codes to decimal numbers.

(a) 10010100 (b) 000110000110

Sol.

8421 BCD (a) 1001 0100 (b) 0001 1000 0110

Decimal 9 4 1 8 6

Advantages of BCD Codes

 BCD coding is similar to the binary equivalent of decimal numbers 0–9.

24

 BCD has no limitation for number size.

 It is easier to convert decimal numbers from or to BCD than to binary

form.

Disadvantages of BCD Codes

 Each decimal number requires four bits to be represented in the BCD

code.

 Arithmetic operations in BCD or weighted codes are much complicated as

it deals with more number of bits and also it has different set of rules.

 BCD is less efficient than binary.

Applications

 They are mainly used to give instructions to microcomputers.

 It is used for interfacing devices.

 It is used in the transfer of information from keyboards to computer

displays and printers.

2.18 Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error

are discussed. The parity method of error detection is introduced, and the cyclic

redundancy check is discussed. Also, the Hamming code for error detection and

correction is presented.

2.19 Parity Method for Error Detection

 Many systems use a parity bit as a means for bit error detection. Any group

of bits contain either an even or an odd number of 1s. A parity bit is attached to a

group of bits to make the total number of 1s in a group always even or always odd.

An even parity bit makes the total number of 1s even, and an odd parity bit makes

the total odd.

 A given system operates with even or odd parity, but not both. For instance,

if a system operates with even parity, a check is made on each group of bits

received to make sure the total number of 1s in that group is even. If there is an

odd number of 1s, an error has occurred.

 As an illustration of how parity bits are attached to a code, table below lists

the parity bits for each BCD number for both even and odd parity. The parity bit

for each BCD number is in the P column.

25

The parity bit can be attached to the code at either the beginning or the end,

depending on system design. Notice that the total number of 1s, including the

parity bit, is always even for even parity and always odd for odd parity.

2.20 Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of

errors, which is very unlikely) but cannot check for two errors in one group. For

instance, let’s assume that we wish to transmit the BCD code 0101. (Parity can be

used with any number of bits; we are using four for illustration.) The total code

transmitted, including the even parity bit, is

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes

a 0).

When this code is received, the parity check circuitry determines that there

is only a single 1 (odd number), when there should be an even number of 1s.

Because an even number of 1s does not appear in the code when it is received, an

error is indicated.

26

An odd parity bit also provides in a similar manner for the detection of

a single error in a given group of bits.

2.21 Error Codes

It is impossible to avoid the interference of noise, which causes errors in the

received binary data at other systems. The bits of the data may change (either 0 to

1 or 1 to 0) during transmission. Therefore error detection and correction code play

an important role in the transmission of data from one source to another. There are

four method for detect errors:

2.22 Parity Method for Error Detection Binary

There are two parity methods, even and odd. In the even parity method, the value

of the bit is chosen so that the total number of 1s in the transmitted signal,

including the parity bit, is even. Similarly, with odd parity, the value of the bit is

chosen so that the total number of 1s is odd.

Even parity (ep): makes the total no. of 1΄s even

Odd parity (op): makes the total no. of 1΄s odd

Example: Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (c) 101101 (d) 1000111001001 (e) 101101011111

Sol.

27

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even.

The parity bit will be the left-most bit (color).

(a) 01010 (b) 1111000 (c) 0101101 (d) 0100011100101 (e) 1101101011111

Example: An odd parity system receives the following code groups: 10110, 11010,

110011, 110101110100, and 1100010101010. Determine which groups, if any,

are in error.

Sol.

 Since odd parity is required, any group with an even number of 1s is incorrect.

The following groups are in error:

110011 and 1100010101010.

2.23 Checksum Method

Checksums are similar to parity bits except, the number of bits in the sums is larger

than parity and the result is always constrained to be zero. That means if the

checksum is zero, an error is detected. A checksum of a message is an arithmetic

sum of codewords of a certain length. The sum is stated by means of 1’s

complement and stored or transferred as a code extension of the actual code word.

At the receiver, a new checksum is calculated by receiving the bit sequence from

the transmitter.

Checksum of messages = M1 + M2 + M3 + M4 + … = 0 0 0 0 0

Example: If k = 4 and n = 8, find the checksum of four segments: (10110011

10101011 01011010 11010101), along with each transmitted message, the

checksum of all the messages are also transmitted.

Sol.

 k (number of messages) = 4, n (number of bits) = 8

28

 10110011 10110011

 10101011 10101011

 01011110 01011110

 1 1

 01011111 01011111

 01011010 01011010

 10111001 10111001

 11010101 11010101

 10001110 10001110

 1 1

 Sum: 10001111 10001111

 Checksum: 01110000 01110000

 Sum: 11111111

 Complement = 00000000

 Conclusion = Accept data

 At sender side At receiver side

2.24 Cyclic Redundancy Check (CRC)

In cyclic redundancy code (CRC), the transmitted bit sequence is:

 TX RX

 Series data + CRC data data + CRC data

The transmitted CRC is compared with the RX CRC and if they match then there

are no errors. If they do not match then error is there.

Example: Determine the transmitted CRC for the following byte of data (D) and

generator code (G). Verify that the remainder is 0. D: 11010011, G: 1010

Sol.

Since the generator code has four data bits, add four 0s (blue) to the data byte. The

appended data (D´) is

 D´ =110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation

until all bits have been used.

29

Example: During transmission, an error occurs in the second bit from the left in

the appended data byte generated in Example above. The received data is

D´ = 100100110100 Apply the CRC process to the received data to detect the error

using the same generator code (1010).

Sol.

Remainder = 0100. Since it is not zero, an error is indicated.

2.25 Hamming Code (HC)

 The Hamming code is used to detect and correct a single-bit error in a

transmitted code. To accomplish this, 4 redundancy bits are introduced in a 7-bit

group of data bits. These redundancy bits are interspersed at bit positions 2n (n =

Remainder = 0100. Since the remainder

is not 0, append the data with the four

remainder bits (blue). Then divide by the

generator code (red). The transmitted

CRC is 110100110100.

Remainder = 0

30

0, 1, 2, 3) within the original data bits. At the end of the transmission, the

redundancy bits have to be removed from the data bits. A recent version of the

Hamming code places all the redundancy bits at the end of the data bits, making

their removal easier than that of the interspersed bits.

7-bits Hamming code is used commonly

Parity bits = 3 bits (p1, p2, p3)

Data bits = 4 bits (d1, d2, d3, d4)

2P ≥ n + P +1 Position of p from (20, 21, 22) 2n where {n= 0, 1, ……., n}

Example: Determine the Hamming code word (7, 4) for the transmitted data 1011

over the noisy communication channel.

Sol.

Step 1: Find parity bit to constructing bit location table.

p1 = d1 d2 d4  1 0 1 = 0

p2 = d1 d3 d4  1 1 1 = 1

P3 = d2 d3 d4  0 1 1 = 0

Step 2: Enter data in the syndrome.

A = p1 d1 d2 d4  0 1 0 1 = 0

B = p2 d1 d3 d4  1 1 1 1 = 0

C = P3 d2 d3 d4  0 0 1 1 = 0

CBA = 000 No errore

p1 = d1 d2 d4 All d except d3

p2 = d1 d3 d4 All d except d2

P3 = d2 d3 d4 All d except d1

Bits position

Status P1 P2 d1 P3 d2 d3 d4

Code word 0 1 1 0 0 1 1

