8086 Microprocessor Laboratory Experiments

Experiment 3: Addressing Modes

Murtadha Hssayeni, Ph.D.

m.hssayeni@uobabylon.edu.iq

Outlines

- Logical address: summary
- Addressing modes
 - Register
 - o Immediate
 - Direct
 - Register indirect
 - Based relative
 - Indexed relative
 - Based indexed addressing
- Procedure
- Discussion

Logical Address: Summary

- □ The **logical address** consists of a segment value and an offset address in the form **segment:offset**
- To access a program in memory:
 The CS and IP are used to define the logical address
- **To access memory data:**
 - Valid segment registers to define segment.
 - Valid general-purpose register to define offset: BX, SI, DI, and BP.
- The 8086 microprocessor provides various **addressing modes**.
 - The addressing mode is a method of <u>specifying an</u> <u>operand:</u>
- 1. Register
- 2. Immediate
- 3. Direct
- 4. Register indirect
- 5. Based relative
- 6. Indexed relative
- 7 Based indexed addressing

Addressing Mode	Operand	Default Segment
Register	reg	none
Immediate	data	none
Direct	[offset]	DS
Register indirect	[BX]	DS
	[SI]	DS
· · · · · · · · · · · · · · · · · · ·	[DI]	DS
Based relative	[BX]+disp	DS
	[BP]+disp	SS
Indexed relative	[DI]+disp	DS
	[SI]+disp	DS
Based indexed relative	[BX][SI]+disp	DS
	[BX][DI]+disp	DS
	[BP][SI]+ disp	SS
	[BP][DI]+ disp	SS

Register addressing mode

□ The register addressing mode involves the use of registers to hold the data to be manipulated.

□ Memory is not accessed when this addressing mode is executed

MOV REG, REG

Example:MOV BX, DX

□ MOV DS, AX

Immediate Addressing Mode

- □ The source operand is constant.
- □ The operand comes immediately after the opcode.
- □ Immediate addressing mode can be used to load information into any of the registers except the segment registers and flag registers.
- **Example:**
 - □ Mov AX, 2550h
 - Mov CX, 625h
 - Mov Bl, 40h

Direct Addressing Mode

□ a 16-bit memory address (offset or **displacement**) is directly specified in the instruction as the location of the operand.

□ The physical address is calculated using **DS** and the offset

MOV REG, Address

Physical address = DS *10h + displacement

- **Example:**
 - □ MOV AX, 1500H
 - □ MOV DS, AX
 - □ MOV CL, 33H
 - □ MOV [3518H], CL
 - □ MOV AX, [5000H]

; moving one byte to memory, **physical address** = **1500*10+3518** ; moving two bytes, logical address DS:5000H

Memory indicators

BX

BP

SI

DI

+ disp

Register Indirect Addressing Mode

□ The registers (**BX**, **SI or DI**) are directly specified in the instruction as the memory location of the operand.

MOV REG, [BX or SI or DI]

BX	SI	+ disp
BP	DI	, arsh

The physical address is calculated using DS and (BX, SI or DI)
 Physical address = DS *10h + offset

Example:
 MOV AX, 1500H
 MOV DS, AX
 MOV CL, 33H
 MOV BX, 3518H
 MOV [BX], CL
 MOV SI, 5000H

MOV SI, 500011

; moving one byte to memory, physical address = 1500*10+3518

; moving two bytes, logical address DS:SI

Based Relative Addressing Mode

□ The registers (**BX**, and **BP**) and a displacement are used to calculate the effective address of the operand.

MOV REG, [BX or BP] + Disp

BX	SI	+ disp
BP	DI	- ursp

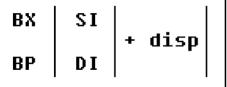
- □ The physical address is calculated
 - 1. using **DS and BX**
 - Physical address = DS *10h + BX + Disp
 - 2. using **SS and BP**
 - Physical address = SS *10h + BP + Disp
- **Example:**
 - □ MOV AX, 0B820H
 - MOV DS, AX
 - MOV CL. 'H'
 - MOV BX, 14CH
 - \square MOV [BX], CL
 - \square MOV [BX], CL \square MOV [BX+2], 'i'
 - □ MOV [BX+4], '!'

; moving one byte to memory, **physical address** = **0B820*10+014C** ; moving one byte to memory, **physical address** = **0B820*10+014C** + 2 ; moving one byte to memory, **physical address** = **0B820*10+014C** + 4

Indexed Relative Addressing Mode

□ The registers (SI, DI) and a displacement are used to calculate the effective address of the operand.

MOV REG, [SI or DI] + Disp


BX	S I	+ disp
BP	DI	

- □ The physical address is calculated
 - 1. using **DS and DI or SI**
 - Physical address = DS *10h + offset + Disp
- **Example:**
 - □ MOV AX, 0B820H
 - □ MOV DS, AX
 - MOV CL, 'H'
 - MOV SI, 14CH
 - □ MOV [SI], CL
 - □ MOV [SI +2], 'i'
 - □ MOV [SI +4], '!'

; moving one byte to memory, **physical address** = **0B820*10+014C** ; moving one byte to memory, **physical address** = **0B820*10+014C** + 2 ; moving one byte to memory, **physical address** = **0B820*10+014C** + 4

Based Indexed Addressing Mode

□ The registers (**BX or BP, and SI or DI**) and a displacement are used to calculate the effective address of the operand.

Use one base register and one index register

- □ The physical address is calculated
 - 1. using DS and BX, SI, and DI
 - Physical address = DS *10h + BX + Disp
 - 2. using SS and BP, SI, and DI
 - Physical address = SS *10h + BP + Disp
- **Example:**
 - MOV AH, [BP+SI+29]
 - MOV CH, [BX+SI] + 20
 - Note: MOV AX, [SI+DI] is illegal

; physical address = SS*10+BP+SI+29

; physical address = DS*10+BX+SI+20

Procedure

- 1. Write an assembly program to use DS = 4500, SS = 2000, BX = 2100, SI = 1486, DI = 8500, BP = 7814, and AX = 2512. All values are in hex.
- 2. Find the addressing mode and the exact physical memory location where AX is stored in each of the following:
 - MOV [BX]+20H, AX
 - MOV [BX+SI]+10H, AX
 - MOV [BP]+12H, AX
- 3. Save the data (A123H) to the physical memory (46300H) if DS = 4500H.

Discussion

- 1. Write a program to store (10101010B) to the memory location 47511H. Using based relative addressing mode.
- 2. Find the addressing modes used in the following program: MOV AX, 3000H MOV DS, AX MOV AX, 4000H MOV SS, AX MOV BX, 0600H MOV BP, 0700H MOV DX, 0A6E2H MOV SI, 0040H MOV DI, 00E0H MOV[BX]+SI, AHMOV[BX]+DI, DH*MOV* [*BP*]+*DI*, *DL* MOV [BX]-20H, DH MOV[DI]+4H, DL*MOV* [*BP*]+100H, *AL*

3. Save the data (0A6E2H) to the physical memory (4EA00H) if DS = 4500H.