#### SPECTROSCOPIC METHODS OF ORGANIC MOLECULES

#### **UV SPECTROSCOPY**



#### WHAT IS SPECTROSCOPY?

The study of the interaction between ELECTROMAGNETIC (EM) RADIATION and MATTER

- The electromagnetic spectrum, in simple terms, is defined as the range of all types of electromagnetic radiation.
- The electromagnetic spectrum is a range of frequencies, wavelengths, and photon energies covering frequencies from below 1 hertz to above 1025 Hz, corresponding to wavelengths that are a few kilometers to a fraction of the size of an atomic nucleus in the spectrum of electromagnetic waves.

- Generally, in a vacuum, electromagnetic waves tend to travel at speeds similar to that of light. However, they do it at various wavelengths, frequencies, and photon energies.
- The electromagnetic spectrum consists of all electromagnetic radiation.
- These can be further classified as infrared radiation, visible light, or ultraviolet radiation.

- The entire range (electromagnetic spectrum) is given by
- radio waves
- microwaves
- infrared radiation
- visible light
- ultra-violet radiation
- X-rays
- gamma rays
- cosmic rays

The increasing order of frequency and decreasing order of wavelength. The type of radiation and their frequency and wavelength ranges are as follows:



| Type of Radiation | Frequency Range (Hz)                          | Wavelength Range      |
|-------------------|-----------------------------------------------|-----------------------|
| Gamma-rays        | $10^{20} - 10^{24}$                           | < 10 <sup>-12</sup> m |
| X-rays            | $10^{17} - 10^{20}$                           | 1 nm – 1 pm           |
| Ultraviolet       | $10^{15} - 10^{17}$                           | 400 nm – 1 nm         |
| Visible           | 4 x 10 <sup>14</sup> - 7.5 x 10 <sup>14</sup> | 750 nm – 400 nm       |
| Near-infrared     | $1 \ge 10^{14} - 4 \ge 10^{14}$               | 2.5 μm – 750 nm       |
| Infrared          | $10^{13} - 10^{14}$                           | 25 μm – 2.5 μm        |
| Microwaves        | $3 \ge 10^{11} - 10^{13}$                     | 1 mm – 25 μm          |
| Radio waves       | < 3 x 10 <sup>11</sup>                        | > 1 mm                |



## WAVE PROPERTIES

 EM radiation is conveniently modeled as waves consisting of perpendicularly oscillating electric and magnetic fields, as shown below.



#### Wave parameters

حيث h هو ثابت بلانك. وقيمته=6.624\*10<sup>-27 ارك /ثانية</sup> E=الطاقة بالارك



ومن ملاحظاتنا على هذه الخصائص الفيزيائية نلاحظ أن الطاقة الضوئية تتناسب طردياً مع التردد وعكسياً مع طول الموجة ي أن الأشعة التي لها أطوال موجات قصيرة لها طاقة عالية والعكس صحيح

#### **Definitions:**

- Period (p) the time required for one cycle to pass a fixed point in space.
- Prequency (v) the number of cycles which pass a fixed point in space per second.
- Amplitude (A) The maximum length of the electric vector in the wave (Maximum height of a wave).
- Wavelength (λ) The distance between two identical adjacent points in a wave (usually maxima or minima).

• *Wavenumber* (v) - The number of waves per cm in units of cm<sup>-1</sup>.

#### Purpose of each Electromagnetic Radiation





#### Visible Light Region of the Electromagnetic Spectrum







## **Ultraviolet – visible spectroscopy**

 Ultraviolet – visible spectroscopy (λ 200 - 800) nm) studies the changes in electronic energy levels within the molecule arising due to transfer of electrons from  $\pi$ - or non-bonding orbitals. It commonly provides the knowledge about  $\pi$ -electron systems, conjugated unsaturations, aromatic compounds and conjugated non-bonding electron systems etc.