
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

 Database System

Concepts and Architecture

Slide 3- 1

Lecture 2

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 2

Outline

 Data Models and Their Categories

 Schemas, Instances, and States

 Three-Schema Architecture

 Data Independence

 DBMS Languages and Interfaces

 Database System Utilities and Tools

 Centralized and Client-Server Architectures

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Models

 One fundamental characteristic of the database

approach is that it provides some level of data

abstraction.

 Data abstraction generally refers to the

suppression of details of data organization and

storage, and the highlighting of the essential

features for an improved understanding of data.

 One of the main characteristics of the database

approach is to support data abstraction so that

different users can perceive data at their preferred

level of detail.

Slide 3- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 4

Data Models

 Data Model:

 A set of concepts to describe the structure of a database,

the operations for manipulating these structures, and

certain constraints that the database should obey.

 Data Model Structure and Constraints:

 Structure of a database typically include elements (and their

data types) as well as groups of elements (e.g. entity,
record, table), and relationships among such groups

 Constraints specify some restrictions on valid data; these

constraints must be enforced at all times

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 5

Data Models (continued)

 Data Model Operations:

 These operations are used for specifying database

retrievals and updates by referring to the constructs

of the data model.

 Operations on the data model may include basic
model operations (e.g. generic insert, delete,

update) and user-defined operations (e.g.

compute_student_gpa, update_inventory)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 6

Categories of Data Models

 Data models categorize according to the types of concepts they use to

describe the database structure:

 Conceptual (high-level, semantic) data models:

 Provide concepts that are close to the way many users perceive data.

 (Also called entity-based or object-based data models.)

 Conceptual data models use concepts such as entities, attributes, and

relationships. An entity represents a real-world object or concept, such

as an employee or a project from the miniworld that is described in the

database. An attribute represents some property of interest that

further describes an entity, such as the employee’s name or salary. A

relationship among two or more entities represents an association

among the entities, for example, a works-on relationship between an

employee and a project.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Categories of Data Models

 Physical (low-level, internal) data models:

 Provide concepts that describe details of how data is stored in the
computer. These are usually specified in an ad-hoc manner through
DBMS design and administration manuals. Concepts provided by
physical data models are generally meant for computer specialists, not for
end users.

 Physical data models describe how data is stored as files in the computer by

representing information such as record formats, record orderings, and access

paths. An access path is a search structure that makes the search for particular

database records efficient, such as indexing or hashing.

 Implementation (representational) data models:

 Provide concepts that fall between the above two, which provide

concepts that may be easily understood by end users but that are not too

far removed from the way data is organized in computer storage.

Representational data models hide many details of data storage on disk

but can be implemented on a computer system directly. (traditional

commercial DBMSs)

 Slide 3- 7

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 8

Schemas versus Instances
 Database Schema:

 The description of a database.

 Includes descriptions of the database structure, data
types, and the constraints on the database.

 Specified during database design and is not expected

to change frequently.

 Schema Diagram:

 An illustrative display of (most aspects of) a
database schema.

 Schema Construct:

 A component of the schema or an object within the
schema, e.g., STUDENT, COURSE.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 9

Schemas versus Instances

 A schema diagram displays only some aspects of a schema, such as the

names of record types and data items, and some types of constraints.

Other aspects are not specified in the schema diagram; for example,

Figure 2.1 shows neither the data type of each data item nor the

relationships among the various files. Many types of constraints are not

represented in schema diagrams. A constraint such as students majoring
in computer science must take CS1310 before the end of their
sophomore year is quite difficult to represent diagrammatically.

 Database State:

 The actual data in a database may change quite frequently. For example, the

database shown in Figure 1.2 changes every time we add a new student or enter a

new grade.

 The actual data stored in a database at a particular moment in time. This

includes the collection of all the data in the database.

 Also called database instance (or occurrence or snapshot).

 In a given database state, each schema construct has its own current set of

instances; for example, the STUDENT construct will contain the set of individual

student entities (records) as its instances.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 11

Database Schema

vs. Database State

 Database State:

 Refers to the content of a database at a moment

in time.

 Initial Database State:

 Refers to the database state when it is initially

loaded into the system.

 Valid State:

 A state that satisfies the structure and constraints

of the database.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 12

Database Schema

vs. Database State (continued)

 Distinction

 The database schema changes very infrequently.

 The database state changes every time the

database is updated.

 Schema is also called intension.

 State is also called extension.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 13

Example of a Database Schema

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 14

Example of a database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 15

Three-Schema Architecture

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products,

but has been useful in explaining database

system organization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 16

Three-Schema Architecture

 The goal of the three-schema architecture, illustrated in Figure 2.2, is to

separate the user applications from the physical database. Defines DBMS

schemas at three levels:

 Internal schema at the internal level to describe physical storage structures

and access paths (e.g indexes).

 Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the structure and

constraints for the whole database for a community of users.

 Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the various user views.

 Each external schema describes the part of the database that a particular user group

is interested in and hides the rest of the database from that user group.

 Usually uses the same data model as the conceptual

schema.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 17

The three-schema architecture

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 18

Three-Schema Architecture

 Mappings among schema levels are needed to

transform requests and data.

 Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for

execution.

 Data extracted from the internal DBMS level is

reformatted to match the user’s external view (e.g.

formatting the results of an SQL query for display

in a Web page)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 19

Data Independence

 Logical Data Independence:
 The capacity to change the conceptual schema without having to change the

external schemas and their associated application programs.

 We may change the conceptual schema to expand the database (by adding a record type or

data item), to change constraints, or to reduce the database (by removing a record type or data

item).

 In the last case, external schemas that refer only to the remaining data should not be

affected. For example, the external schema of Figure 1.5(a) should not be affected by

changing the GRADE_REPORT file (or record type) shown in Figure 1.2 into the one

shown in Figure 1.6(a).

 Only the view definition and the mappings need to be changed in a DBMS that

supports logical data independence. After the conceptual schema undergoes a logical

reorganization, application programs that reference the external schema constructs

must work as before.

 Changes to constraints can be applied to the conceptual schema without affecting the

external schemas or application programs.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Data Independence

 Physical Data Independence:
 The capacity to change the internal schema without having to change the

conceptual schema.

 For example, the internal schema may be changed when certain file
structures are reorganized or new indexes are created to improve
database performance

 Physical data independence exists in most databases and file environments

where physical details, such as the exact location of data on disk, and

hardware details of storage encoding, placement, compression, splitting,

merging of records, and so on are hidden from the user. Applications remain

unaware of these details.

 On the other hand, logical data independence is harder to achieve because it

allows structural and constraint changes without affecting application

programs—a much stricter requirement.

Slide 3- 23

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 24

Data Independence

 When a schema at a lower level is changed, only

the mappings between this schema and higher-

level schemas need to be changed in a DBMS

that fully supports data independence.

 The higher-level schemas themselves are

unchanged.

 Hence, the application programs need not be

changed since they refer to the external schemas.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 25

DBMS Languages

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 High-Level or Non-procedural Languages: These

include the relational language SQL

 May be used in a standalone way or may be

embedded in a programming language

 Low Level or Procedural Languages:

 These must be embedded in a programming

language

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 26

DBMS Languages

 Data Definition Language (DDL):

 Used by the DBA and database designers to
specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define
internal and external schemas (views).

 In some DBMSs, separate storage definition
language (SDL) and view definition language
(VDL) are used to define internal and external
schemas.

 SDL is typically realized via DBMS commands
provided to the DBA and database designers

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 27

DBMS Languages

 Data Manipulation Language (DML):

 Used to specify database retrievals and updates

 DML commands (data sublanguage) can be

embedded in a general-purpose programming

language (host language), such as COBOL, C,

C++, or Java.

 A library of functions can also be provided to access

the DBMS from a programming language

 Alternatively, stand-alone DML commands can be

applied directly (called a query language).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 28

Types of DML

 High Level or Non-procedural Language:

 For example, the SQL relational language

 Are “set”-oriented and specify what data to retrieve

rather than how to retrieve it.

 Also called declarative languages.

 Low Level or Procedural Language:

 Retrieve data one record-at-a-time;

 Constructs such as looping are needed to retrieve

multiple records, along with positioning pointers.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 29

DBMS Interfaces

 Stand-alone query language interfaces

 Example: Entering SQL queries at the DBMS

interactive SQL interface (e.g. SQL*Plus in

ORACLE)

 Programmer interfaces for embedding DML in

programming languages

 User-friendly interfaces

 Menu-based, forms-based, graphics-based, etc.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 30

DBMS Programming Language Interfaces

 Programmer interfaces for embedding DML in a programming languages:

 Embedded Approach: e.g embedded SQL (for C, C++, etc.), SQLJ (for Java).

Embedded SQL is a method of combining the computing power of a

programming language and the database manipulation capabilities of SQL.

 Procedure Call Approach: e.g. JDBC (Java Database Connectivity) for Java,

ODBC (Open Database Connectivity is an open standard Application

Programming Interface (API) for accessing a database) for other programming

languages

 Database Programming Language Approach: e.g. ORACLE has PL/SQL

(Procedural Language for SQL), a programming language based on SQL;

language incorporates SQL and its data types as integral components.

 PL/SQL includes procedural language elements such as conditions and loops,

and can handle exceptions (run-time errors). One can create PL/SQL units

such as procedures, functions, packages, types, and triggers, which are stored

in the database for reuse by applications that use any of the Oracle Database

programmatic interfaces.

https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Program_loop
https://en.wikipedia.org/wiki/Exception_handling

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 31

User-Friendly DBMS Interfaces

 Menu-based, popular for browsing on the web

 Forms-based, designed for naïve users

 Graphics-based

 (Point and Click, Drag and Drop, etc.)

 Natural language: requests in written English

 Combinations of the above:

 For example, both menus and forms used

extensively in Web database interfaces

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 3- 32

Database System Utilities

 To perform certain functions such as:

 Loading data stored in files into a database.

Includes data conversion tools.

 Backing up the database periodically on tape.

 Reorganizing database file structures.

 Report generation utilities.

 Performance monitoring utilities.

 Other functions, such as sorting, user monitoring,

data compression, etc.

