
8086 Microprocessor
Laboratory Experiments
Experiment 4: The Stack

University of Babylon, Spring Semester 2025 1

Murtadha Hssayeni, Ph.D.

m.hssayeni@uobabylon.edu.iq

mailto:m.hssayeni@uobabylon.edu.iq

The Stack
 The stack is an area of memory for keeping temporary addresses and data.

 For 8086, the stack is 64KByte long, and it is organized as 32K words from the software point
of view.
 The stack pointer (SP) and base pointer (BP) are used as offset beside the stack segment register

(SS).

 The stack is used by CALL instruction to keep return address for procedure
 RET instruction gets this value from the stack and returns it (offset) to IP register.
 When INT instruction calls an interrupt, it stores code segment and offset in the stack.
 IRET instruction is used to return from interrupt call.

 We can also use the stack to keep any other data,

 There are two instructions that work with the stack:
 PUSH - stores 16 bit value in the stack.
 POP - gets 16 bit value from the stack.

2University of Babylon, Spring Semester 2025

The Stack: Instructions Syntax

 Syntax for PUSH instruction:
 PUSH REG

 PUSH SREG

 PUSH memory

 PUSH immediate

 Pushing a word-wide data.

 REG: AX, BX, CX, DX, DI, SI, BP, SP.

 SREG: DS, ES, SS, CS.

 Memory: [BX], [BX+SI+7], 16 bit variable,
etc...

 Immediate: 5, -24, 3Fh, 10001101b, etc...

3

Syntax for POP instruction:

POP REG

POP SREG

POP memory

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, (except CS).

Memory: [BX], [BX+SI+7], 16 bit variable, etc...

University of Babylon, Spring Semester 2025

The Stack: LIFO
 The stack uses Last-In First-Out (LIFO) algorithm

 This means that the first pushed value would be the last
popped value from stack memory.

 It is very important to do equal number of PUSHs and
POPs

 PUSH and POP instruction are especially useful
because we don't have too many registers to operate
with:
 Store original value of the register in stack (using

PUSH).
 Use the register for any purpose.
 Restore the original value of the register from stack

(using POP).

4

Memory (word-wide)

SS

SP

8086

SS:0000H

SS:SP

SS:FFFEH

End of stack

Top of stack

(TOS)

Bottom of

stack (BOS)

0FEE

B624

0F70

.

.

.

.

.

.

University of Babylon, Spring Semester 2025

The Stack: Example 1

5University of Babylon, Spring Semester 2025

The Stack: Example 2

6University of Babylon, Spring Semester 2025

Example 1

Write a 8086 program to do the following:
 Store the value 1234H to the register AX.

 Store the value 5678H to the register BX.

 Store the register AX to the stack.

 Copy the value of the register BX to AX.

 What is the logical address of TOS?

 Restore the value of the register AX from the
stack.

7University of Babylon, Spring Semester 2025

org 100h

MOV AX, 1234H

MOV BX, 5678H

PUSH AX

MOV AX, BX

; do some work on AX then retrieve old value.

; Logical address of TOS is SS:SP 0700:FFFC

POP AX

ret

Procedure
1. Write a simple program to push the following values to the stack: AA00H, BB11H, and

33FFH. Then Pull 33FFH to DX.

2. What is the logical address of the TOS and BOS?

3. What is the physical address of TOS?

4. Pull AA00H to CX

University of Babylon, Spring Semester 2025 8

Discussion
1. Write a program to Store the value 1234H to the register AX. Store the value 5678H to the register

BX. Next swap the values of AX and BX using the Stack.

2. Run the following code:

ORG 100H

PUSH 0FFEEH
CALL add1
POP BX
; other operations

add1:
ADD AX, CX
RET

RET

3. What do you notice about the stack and the SP when executing
1. The CALL instruction.
2. The RET instruction.

University of Babylon, Spring Semester 2025 9

