

Subject: Methods of Construction and Estimation

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

Scraper Performance & productivity

Scrapers and their description:

Scrapers, also called wheel tractor scrapers, are commonly used to scrape and level surfaces.

- These heavy-duty earthmoving machines can also haul earth and materials, such as dirt and gravel, more than just a short distance that they can move it from one job site to another.
- Scrapers offer extreme efficiency over other earthmoving vehicles when it comes to transporting materials.
- Their all-in-on productive approach can be measured by their cycle times the time it takes to load, haul, dump, and get back into position.
- A single scraper operator can move up to 72 cubic yards of material per cycle, which can cut your labor in half.

Key Parts of a Scraper:

- Scraper: The scraping blade dislodges material from the ground as the heavy machinery moves forward.
- **Bowl:** The bowl has a cutting edge that cuts the earth and then loads and carries it.
- Apron: This vertical blade, adjacent to the scraping blade, closes when the bowl is full, so the load is ready to be transported to a new location.
- *Ejector:* The ejector, at the rear of the bowl, uses hydraulics to expel loaded material.

Page 1 of 9

Subject: Methods of Construction and Estimation

Lecture No.: 8

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

The Suitable Work to Scrapers:

- Scrapers are known for their versatility as they can be used in the construction industry, agricultural operations, or mining operations.
- There are two types of scrapers: self-propelled scrapers (motor scrapers) and towed scrapers, which require a separate piece of construction equipment to haul them.

All types of scrapers can primarily perform tasks and projects that includes activities

of:

- Leveling
- **Grading**
- **Excavating**
- Road building
- Forestry applications
- **Earthmoving**

Scraper Productivity Calculation:

Output (m³/hr)

- = Volume of carried materials by Scraper bowl (heaped capacity)(m³)
- × No. of Scraper trips per hour

plane of scraper trip

Subject: Methods of Construction and Estimation

Lecture No.: 8

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

when determining the payload (Volume) per scraper cycle, it is necessary to check both:

- *The rated weight payload.*
- The heaped volume capacity.
 - The volume corresponding to the lesser of these two values will, of course, govern.
 - The method of estimating production is illustrated in the following application case study.

Cycle time = Fixed time + variable time

Fixed time = time for all activity except transportation and return Variable time = transportation time + return time

Where: Fixed cycle time (**Table 4-7**) in this case includes:

- Spot time: It represents the time required for a unit to position itself in the cut and begin loading, including any waiting for a pusher.
- load time.
- maneuver and dump time.

Table 4-7 Scraper fixed time (min)

	Spot Time		
Conditions	Single Pusher	Tandem Pusher	
Favorable	0.2	0.1	
Average	0.3	0.2	
Average Unfavorable	0.5	0.5	

Conditions	Load Time					
	Single Pusher	Tandem Pusher	Elevating Scraper	Auger	Push-Pull*	
Favorable	0.5	0.4	0.8	0.7	0.7	
Average	0.6	0.5	1.0	0.9	1.0	
Unfavorable	1.0	0.9	1.5	1.3	1.4	

	Maneuver and Dump Time		
Conditions	Single Engine	Twin Engine	
Favorable	0.3	0.3	
Average	0.7	0.6	
Unfavorable	1.0	0.9	

^{*}Per pair of scrapers.

Subject: Methods of Construction and Estimation Lecture No.: 8

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

Whereas: Variable cycle time in this case includes:

- haul time and
- return time.
- Haul and return times are estimated by the use of travel-time curves or by using the average-speed method with performance and retarder curves (*Figure 4-2*).
- o It is usually necessary to break a haul route up into sections having similar total resistance values.
- The total travel time required to traverse all sections is found as the sum of the section Gross weight travel times.

Figure 4-2 Wheel scraper performance curve. (Courtesy of Caterpillar Inc.)

University of Babylon College of Engineering Department of Civil Engineering Class: IV Stage Civil Eng. 2025-2026

Subject: Methods of Construction and Estimation

Lecture No.: 8

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

Case Study No. 8-1:

Find the output of scraper used in a highway project transportation distance = 600 m, scraper capacity $22 m^3$, and transportation velocity (19 km/hr), return velocity $(40 \, km/hr)$, fixed time 2.3 min, operating factor (0.83).

Solution:

Time of output trip = $transportation\ time + return\ time + fixed\ time$

$$= \frac{0.6}{\frac{19}{60}} + \frac{0.6}{\frac{40}{60}} + 2.3 = 5.1 \, min.$$

No. of trips =
$$\frac{60}{5.1} * 0.83 = 9.8 trip$$

Output per hour = $22 * 9.8 = 215.6 m^3/hr$

Output per day = $215.6 * 8 = 1724.8 \text{ m}^3/\text{day}$

Case Study No. 8-2:

Find the cycle time of scraper used in a highway project with transportation distance is 700 m, scraper capacity $22 m^3$, and transportation velocity (17 km/hr), return velocity (39 km/hr), operating factor (0.83). In addition, scraper has single pusher to working on unfavorable conditions.

Solution:

Cycle time = Fixed time + variable time

time for all activity except transportation and return

From table 4-7: spot time 0.5 min, load time 1.0min, maneuver and dump time 1.0min Fixed time = 0.5 + 1.0 + 1.0 = 2.5 min

Variable time = transportation time + return time

Variable time
$$=\frac{0.7}{\frac{17}{60}} + \frac{0.7}{\frac{39}{60}} = 3.55 \text{ min}$$

 $Cvcle\ time = 2.5 + 3.55 = 6.05\ min$

Subject: Methods of Construction and Estimation
Lecture No. 8

Lesson topic: Scraper Performance & Productivity Lecturer: Dr. Hassanean S.H.J. Alsharifi

Case Study No. 8-3:

For a Scraper of Caterpillar (627-B), use the performance chart and the following information to:

- The weight of the scraper (empty) is 33570 kg.
- The weight of the soil is 21770 kg.
- Rolling resistance is 20 kg/ton.
- *Grade is 4%.*

Find the maximum speed for the scraper in the following stages:

- Scraper is empty and moves up the grade.
- Scraper is loaded and moves up the grade.

Solution:

From Caterpillar (627-B) performance chart:

Weight of scraper (empty) = 33570 kg.

Total resistance = RR + GR = 2% + 4% = 6%.

Using performance chart \rightarrow velocity = 48 km/hr (8th gear).

Weight of scraper (loaded) = 33570 + 21770 = 55340 kg.

Using performance chart \rightarrow velocity = 28 km/hr (6th gear).

Subject: Methods of Construction and Estimation Lecture No.: 8

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

Page 7 of 9

University of Babylon College of Engineering Department of Civil Engineering Class: IV Stage Civil Eng. 2025-2026

Subject: Methods of Construction and Estimation

Lesson topic: Scraper Performance & Productivity

Lecturer: Dr. Hassanean S.H.J. Alsharifi

Case Study No. 8-4:

Using the performance chart and the following information, calculate the cost of the project:

- 1- Scraper capacity is 15 m³.
- 2- Soil density (loose) is 1400 kg/m^3 .
- 3- The weight of the scraper (empty) is 33570 kg.
- 4- Fixed time is 0.47 min.
- 5- Operating factor is 50 min/hr.
- 6- Swelling factor of soil is 25%.

Scraper moves on straight road (level road) for a distance of 150 m, the rolling resistance is 40 kg/ton, then moving on a road with grade 4% for a distance of 250 m and rolling resistance of 40 kg/ton then return to the starting point empty for distance of 500 m with rolling resistance of 60 kg/ton. Find the output of the scraper per a day and if the cost of 1 m³ of the excavation earth and transported and spread is 500 IQD/m³, the rent of two scrapers and a bulldozer is 900*10³ IQD/day what is the total profit that contractor can gain per each operating day?

Solution:

From Caterpillar performance chart:

Weight of scraper (empty) = 33570 kg.

Weight of the soil = $15 \times 1400 = 21000 \text{ kg}$.

Total weight = 54570 kg

Total resistance = RR + GR = 4% + 4% = 8%.

Using performance chart:

- Velocity of scraper (loaded) moving on the straight road for a distance of 150 m with RR = $40 \text{ kg/ton } (4\%) \text{ is} = 40 \text{ km/hr } (7^{\text{th}} \text{ gear}).$
- Velocity of scraper (loaded) moving up the grade road (4%) for a distance of 250 m with RR = 40 kg/ton (4%), total (RR + GR) = 8% is = $22 \text{ km/hr } (5^{th} \text{ gear})$.

Subject: Methods of Construction and Estimation Lecture No.: 8

Lesson topic: Scraper Performance & Productivity Lecturer: Dr. Hassanean S.H.J. Alsharifi

• Velocity of scraper (empty) return on the straight road for a distance of 500 m with $RR = 60 \text{ kg/ton } (6\%) \text{ is} = 48 \text{ km/hr } (8^{th} \text{ gear}).$

Time of output trip is:

• For 150
$$m = \frac{150}{40 \times \frac{1000}{60}} = 0.225 \, min.$$

• For 250
$$m = \frac{250}{22 \times \frac{1000}{60}} = 0.682 \, min.$$

• For
$$500 m = \frac{500}{48 \times \frac{1000}{60}} = 0.625 min.$$

• fixed time = 0.47

The time of trip = 0.225 + 0.682 + 0.625 + 0.47 = 2 min.

No. of trips for each scraper =
$$\frac{50}{2}$$
 = 25 trip.

Volume of soil (embakment) =
$$\frac{15}{1.25}$$
 = 12 m^3 .

$$\therefore$$
 Output of the scraper = $12 \times 25 = 300 \, m^3/hr$

$$\therefore$$
 Output for two scrapers = $2 \times 300 = 600 \, m^3/hr$

$$Cost\ for\ work = 600 \times 500 = 300 \times 10^3\ ID/hr$$

cost for a day =
$$300 \times 10^3 \times 8 = 2400 \times 10^3 IQD$$

$$Profit = 2400 \times 10^3 - 900 \times 10^3 = 1500 \times 10^3 IQD$$