
Computer Architecture
Second year

Dr. Salah Al-Obaidi

Lecture #3: Instruction Set Architecture Spring 2024

Contents

Contents i

3 Instruction Set Architecture 23

3.1 Classifying Instruction Set Architectures 26

3.2 The Evolution of the Intel x86 Architecture 30

3.3 ARM Architecture . 33

i

3. Instruction Set Architecture

Instruction set architecture (ISA) is the portion of the computer that is visible to the

programmer or compiler writer. The ISA serves as the boundary between the software

and hardware (see Figure 3.1).

Figure 3.1: the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

This quick review of ISA will use examples from 80x86, ARM, and MIPS to illustrate

the seven dimensions of an ISA.

1. Class of ISA: Nearly, all ISAs today are classified as general-purpose register

architectures, where the operands are either registers or memory locations. The

80x86 has 16 general-purpose registers and 16 that can hold floating-point data,

23

3. Instruction Set Architecture

while MIPS has 32 general-purpose and 32 floating-point registers. The two popular

versions of this class are register-memory ISAs such as the 80x86, which can access

memory as part of many instructions, and load-store ISAs such as MIPS, which can

access memory only with load or store instructions. All recent ISAs are load-store.

2. Memory addressing: Virtually all desktop and server computers, including the

80x86 and MIPS, use byte addressing to access memory operands. Some architectures,

like ARM and MIPS, require that objects must be aligned. An access to an object

of size s bytes at byte address A is aligned if A mod s = 0. The 80x86 does not

require alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes: In addition to specifying registers and constant operands,

addressing modes specify the address of a memory object. MIPS addressing modes

are Register, Immediate (for constants), and Displacement, where a constant offset

is added to a register to form the memory address. The 80x86 supports those three

plus three variations of displacement: no register (absolute), two registers (based

indexed with displacement), two registers where one register is multiplied by the size

of the operand in bytes (based with scaled index and displacement). It has more like

the last three, minus the displacement field: register indirect, indexed, and based

with scaled index.

4. Types and sizes of operands: Like most ISAs, MIPS and 80x86 support operand

sizes of 8-bit (ASCII character), 16-bit (Unicode character or half word), 32-bit

(integer or word), 64-bit (double word or long integer), and IEEE 754 floating point

in 32-bit (single precision) and 64-bit (double precision). The 80x86 also supports

80-bit floating point (extended double precision).

5. Operations: The general categories of operations are data transfer, arithmetic logical,

control, and floating point. MIPS is a simple and easy-to-pipeline instruction set

architecture, and it is representative of the RISC architectures being used in 2006.

Figure 3.2 summarizes the MIPS ISA. The 80x86 has a much richer and larger set of

operations.

24

Figure 3.2: Subset of the instructions in MIPS64. SP = single precision; DP =
double precision.

25

3. Instruction Set Architecture

6. Control flow instructions: Virtually all ISAs, including 80x86 and MIPS, support

conditional branches, unconditional jumps, procedure calls, and returns. Both use

PC-relative addressing, where the branch address is specified by an address field that

is added to the PC. There are some small differences. MIPS conditional branches (

BE, BNE, etc.) test the contents of registers, while the 80x86 branches (JE, JNE,

etc.) test condition code bits set as side effects of arithmetic/logic operations. MIPS

procedure call (JAL) places the return address in a register, while the 80x86 call (

CALLF) places the return address on a stack in memory.

7. Encoding an ISA: There are two basic choices on encoding: fixed length and variable

length. All MIPS instructions are 32 bits long, which simplifies instruction decoding.

The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable length

instructions can take less space than fixed-length instructions, so a program compiled

for the 80x86 is usually smaller than the same program compiled for MIPS. Note that

choices mentioned above will affect how the instructions are encoded into a binary

representation. For example, the number of registers and the number of addressing

modes both have a significant impact on the size of instructions, as the register field

and addressing mode field can appear many times in a single instruction.

3.1 Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in this

section we will focus on the alternatives for this portion of the architecture. The major

choices are a stack, an accumulator, or a set of registers. Operands may be named

explicitly or implicitly: The operands in a stack architecture are implicitly on the top of

the stack, and in an accumulator architecture one operand is implicitly the accumulator.

The general-purpose register architectures have only explicit operands—either registers or

memory locations. Figure 3.3 shows a block diagram of such architectures, and Figure

3.4 shows how the code sequence C=A+B would typically appear in these three classes

of instruction sets. The explicit operands may be accessed directly from memory or may

26

3.1. Classifying Instruction Set Architectures

need to be first loaded into temporary storage, depending on the class of architecture and

choice of specific instruction.

As the figures show, there are really two classes of register computers. One class

can access memory as part of any instruction, called register-memory architecture,

and the other can access memory only with load and store instructions, called load-

store architecture. A third class, not found in computers shipping today, keeps all

operands in memory and is called a memory-memory architecture. Some instruction

set architectures have more registers than a single accumulator, but place restrictions on

uses of these special registers. Such an architecture is sometimes called an extended

accumulator or special-purpose register computer.

Figure 3.3: Operand locations for four instruction set architecture classes. The
arrows indicate whether the operand is an input or the result of the ALU operation, or
both an input and result. Lighter shades indicate inputs, and the dark shade indicates
the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which
is combined with the operand below. The first operand is removed from the stack, the
result takes the place of the second operand, and TOS is updated to point to the result.
All operands are implicit. In (b), the Accumulator is both an implicit input operand and
a result. In (c), one input operand is a register, one is in memory, and the result goes
to a register. All operands are registers in (d) and, like the stack architecture, can be
transferred to memory only via separate instructions: push or pop for (a) and load or
store for (d).

27

3. Instruction Set Architecture

Figure 3.4: The code sequence for C= A+B for four classes of instruction
sets. Note that the Add instruction has implicit operands for stack and accumulator
architectures, and explicit operands for register architectures. It is assumed that A, B,
and C all belong in memory and that the values of A and B cannot be destroyed. Figure
3.3 shows the Add operation for each class of architecture.

Although most early computers used stack or accumulator-style architectures, virtually

every new architecture designed after 1980 uses a load-store register architecture. The

major reasons for the emergence of general-purpose register (GPR) computers are twofold.

First, registers—like other forms of storage internal to the processor—are faster than

memory. Second, registers are more efficient for a compiler to use than other forms

of internal storage. For example, on a register computer the expression (A*B) – (B*C)

– (A*D) may be evaluated by doing the multiplications in any order, which may be

more efficient because of the location of the operands or because of pipelining concerns.

Nevertheless, on a stack computer the hardware must evaluate the expression in only one

order, since operands are hidden on the stack, and it may have to load an operand multiple

times.

How many registers are sufficient? The answer, of course, depends on the effectiveness

of the compiler. Most compilers reserve some registers for expression evaluation, use some

for parameter passing, and allow the remainder to be allocated to hold variables. Modern

compiler technology and its ability to effectively use larger number of registers has led to

an increase in register counts in more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both characteristics

concern the nature of operands for a typical arithmetic or logical instruction (ALU

instruction). The first concerns whether an ALU instruction has two or three operands.

28

3.1. Classifying Instruction Set Architectures

In the three-operand format, the instruction contains one result operand and two source

operands. In the two-operand format, one of the operands is both a source and a result

for the operation. The second distinction among GPR architectures concerns how many

of the operands may be memory addresses in ALU instructions. The number of memory

operands supported by a typical ALU instruction may vary from none to three. Figure 3.5

shows combinations of these two attributes with examples of computers. Although there

are seven possible combinations, three serve to classify nearly all existing computers. As

we mentioned earlier, these three are load-store (also called register-register), register-

memory, and memory-memory.

Figure 3.5: Typical combinations of memory operands and total operands
per typical ALU instruction with examples of computers. Computers with no
memory reference per ALU instruction are called load-store or register-register computers.
Instructions with multiple memory operands per typical ALU instruction are called register-
memory or memory-memory, according to whether they have one or more than one memory
operand.

Figure 3.6 shows the advantages and disadvantages of each of these alternatives. Of

course, these advantages and disadvantages are not absolutes: They are qualitative and

their actual impact depends on the compiler and implementation strategy. A GPR

computer with memory-memory operations could easily be ignored by the compiler and

used as a load-store computer. One of the most pervasive architectural impacts is on

instruction encoding and the number of instructions needed to perform a task.

29

3. Instruction Set Architecture

Figure 3.6: Advantages and disadvantages of the three most common types of
general-purpose register computers. The notation (m, n) means m memory operands
and n total operands. In general, computers with fewer alternatives simplify the compiler’s
task since there are fewer decisions for the compiler to make. Computers with a wide
variety of flexible instruction formats reduce the number of bits required to encode the
program. The number of registers also affects the instruction size since you need log2
(number of registers) for each register specifier in an instruction. Thus, doubling the
number of registers takes 3 extra bits for a register-register architecture, or about 10% of
a 32-bit instruction.

3.2 The Evolution of the Intel x86 Architecture

We rely on many concrete examples of computer design and implementation to illustrate

concepts and to illuminate trade-offs. Numerous systems, both contemporary and historical,

provide examples of important computer architecture design features. We relies principally

on examples from two processor families: the Intel x86 and the ARM architectures.

The current x86 offerings represent the results of decades of design effort on complex

instruction set computers (CISCs). The x86 is considered an excellent example of

CISC design. An alternative approach to processor design is the reduced instruction

set computer (RISC). The ARM architecture is used in a wide variety of embedded

systems and is one of the most powerful and best-designed RISC-based systems on the

market.

Interestingly, as microprocessors have grown faster and much more complex, Intel has

actually picked up the pace. Intel used to develop microprocessors one after another,

30

3.2. The Evolution of the Intel x86 Architecture

every four years. But Intel hopes to keep rivals at bay by trimming a year or two off this

development time, and has done so with the most recent x86 generations.

It is worthwhile to list some of the highlights of the evolution of the Intel product line:

■ 8080: The world’s first general- purpose microprocessor. This was an 8-bit machine,

with an 8-bit data path to memory. The 8080 was used in the first personal computer,

the Altair.

■ 8086: A far more powerful, 16-bit machine. In addition to a wider data path and

larger registers, the 8086 sported an instruction cache, or queue, that prefetches a

few instructions before they are executed. A variant of this processor, the 8088, was

used in IBM’s first personal computer, securing the success of Intel. The 8086 is the

first appearance of the x86 architecture.

■ 80286: This extension of the 8086 enabled addressing a 16-MB memory instead of

just 1 MB.

■ 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With a

32-bit architecture, the 80386 rivaled the complexity and power of minicomputers

and mainframes introduced just a few years earlier. This was the first Intel processor

to support multitasking, meaning it could run multiple programs at the same time.

■ 80486: The 80486 introduced the use of much more sophisticated and powerful

cache technology and sophisticated instruction pipelining. The 80486 also offered a

built-in math coprocessor, offloading complex math operations from the main CPU.

■ Pentium: With the Pentium, Intel introduced the use of superscalar techniques,

which allow multiple instructions to execute in parallel.

■ Pentium Pro: The Pentium Pro continued the move into superscalar organization

begun with the Pentium, with aggressive use of register renaming, branch prediction,

data flow analysis, and speculative execution.

31

3. Instruction Set Architecture

■ Pentium II: The Pentium II incorporated Intel MMX technology, which is designed

specifically to process video, audio, and graphics data efficiently.

■ Pentium III: The Pentium III incorporates additional floating- point instructions:

The Streaming SIMD Extensions (SSE) instruction set extension added 70 new

instructions designed to increase performance when exactly the same operations are

to be performed on multiple data objects. Typical applications are digital signal

processing and graphics processing.

■ Pentium 4: The Pentium 4 includes additional floating- point and other

enhancements for multimedia.

■ Core: This is the first Intel x86 microprocessor with a dual core, referring to the

implementation of two cores on a single chip.

■ Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad

provides four cores on a single chip. More recent Core offerings have up to 10 cores per

chip. An important addition to the architecture was the Advanced Vector Extensions

instruction set that provided a set of 256-bit, and then 512- bit, instructions for

efficient processing of vector data.

Almost 40 years after its introduction in 1978, the x86 architecture continues to

dominate the processor market outside of embedded systems. Although the organization

and technology of the x86 machines have changed dramatically over the decades, the

instruction set architecture has evolved to remain backward compatible with earlier versions.

Thus, any program written on an older version of the x86 architecture can execute on

newer versions. The rate of change has been the addition of roughly one instruction per

month added to the architecture, so that there are now thousands of instructions in the

instruction set.

The x86 provides an excellent illustration of the advances in computer hardware over

the past 35 years. The 1978 8086 was introduced with a clock speed of 5 MHz and had

29,000 transistors. A six-core Core i7 EE 4960X introduced in 2013 operates at 4 GHz, a

32

3.3. ARM Architecture

speedup of a factor of 800, and has 1.86 billion transistors, about 64,000 times as many as

the 8086.

3.3 ARM Architecture

The ARM architecture refers to a processor architecture that has evolved from RISC

design principles and is used in embedded systems.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed by ARM

Holdings, Cambridge, England. The company doesn’t make processors but instead designs

microprocessor and multicore architectures and licenses them to manufacturers.

ARM chips are high-speed processors that are known for their small die size and low

power requirements. They are widely used in smartphones and other handheld devices,

including game systems, as well as a large variety of consumer products. ARM chips are

the processors in Apple’s popular iPod and iPhone devices, and are used in virtually all

Android smartphones as well. ARM is probably the most widely used embedded processor

architecture.

The origins of ARM technology can be traced back to the British-based Acorn

Computers company. In the early 1980s, Acorn was awarded a contract by the British

Broadcasting Corporation (BBC) to develop a new microcomputer architecture for the

BBC Computer Literacy Project. The success of this contract enabled Acorn to go on to

develop the first commercial RISC processor, the Acorn RISC Machine (ARM). The

first version, ARM1, became operational in 1985 and was used for internal research and

development as well as being used as a coprocessor in the BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual

fabrication of the processor chips. VLSI was licensed to market the chip on its own and

had some success in getting other companies to use the ARM in their products, particularly

as an embedded processor.

33

3. Instruction Set Architecture

The ARM design matched a growing commercial need for a high-performance, low-

power- consumption, small- size, and low- cost processor for embedded applications. But

further development was beyond the scope of Acorn’s capabilities. Accordingly, a new

company was organized, with Acorn, VLSI, and Apple Computer as founding partners,

known as ARM Ltd. The Acorn RISC Machine became Advanced RISC Machines.

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of the

processor and efficient execution. All instructions are 32 bits long and follow a regular

format. This makes the ARM ISA suitable for implementation over a wide range of

products.

Augmenting the basic ARM ISA is the Thumb instruction set, which is a reencoded

subset of the ARM instruction set. Thumb is designed to increase the performance of ARM

implementations that use a 16-bit or narrower memory data bus, and to allow better code

density than provided by the ARM instruction set. The Thumb instruction set contains a

subset of the ARM 32-bit instruction set recoded into 16-bit instructions.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related technologies,

but the bulk of their product line is the Cortex family of microprocessor architectures.

There are three Cortex architectures, conveniently labeled with the initials A, R, and M.

■ Cortex-A/Cortex-A50: The Cortex-A and Cortex-A50 are application processors,

intended for mobile devices such as smartphones and eBook readers, as well as

consumer devices such as digital TV and home gateways (e.g., DSL and cable

Internet modems). These processors run at higher clock frequency (over 1 GHz),

and support a memory management unit (MMU), which is required for full feature

OSs such as Linux, Android, MS Windows, and mobile OSs. The two architectures

use both the ARM and Thumb-2 instruction sets; the principal difference is that the

Cortex-A is a 32-bit machine, and the Cortex-A50 is a 64-bit machine.

34

3.3. ARM Architecture

■ Cortex-R: The Cortex-R is designed to support real-time applications, in which the

timing of events needs to be controlled with rapid response to events. They can run

at a fairly high clock frequency (e.g., 200MHz to 800MHz) and have very low response

latency. The Cortex-R includes enhancements both to the instruction set and to

the processor organization to support deeply embedded real-time devices. Most of

these processors do not have MMU; the limited data requirements and the limited

number of simultaneous processes eliminate the need for elaborate hardware and

software support for virtual memory. The Cortex- R does have a Memory Protection

Unit (MPU), cache, and other memory features designed for industrial applications.

Examples of embedded systems that would use the Cortex-R are automotive braking

systems, mass storage controllers, and networking and printing devices.

■ Cortex-M: Cortex-M series processors have been developed primarily for the

microcontroller domain where the need for fast, highly deterministic interrupt

management is coupled with the desire for extremely low gate count and lowest

possible power consumption. As with the Cortex-R series, the Cortex-M architecture

has an MPU but no MMU. The Cortex- M uses only the Thumb-2 instruction

set. The market for the Cortex- M includes IoT devices, wireless sensor/actuator

networks used in factories and other enterprises, automotive body electronics, and

so on.

35

	Contents
	Instruction Set Architecture
	Classifying Instruction Set Architectures
	The Evolution of the Intel x86 Architecture
	ARM Architecture

