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CHAPTER FIVE: DIGITAL FILTER DESIGN 
1. Structures for IIR Systems 
1.1 Direct Form I  
The input 𝑥𝑥(𝑛𝑛) and output 𝑦𝑦(𝑛𝑛) of a causal (Infinite Impulse Response) IIR filter with a rational 
system function 

𝐻𝐻(𝑧𝑧) =
𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧) =

∑ 𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘𝑀𝑀
𝑘𝑘=0

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

                                                                (1.1) 

is described by the linear constant coefficient difference equation 

𝑦𝑦(𝑛𝑛) + �𝑎𝑎𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑘𝑘) = �𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑀𝑀

𝑘𝑘=0

𝑁𝑁

𝑘𝑘=1

                                                 (1.2) 

or, 

𝑦𝑦(𝑛𝑛) = �𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘) − 
𝑀𝑀

𝑘𝑘=0

�𝑎𝑎𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

                                                 (1.3) 

The block diagram of Fig.(1.1) is an explicit pictorial representation of Eq.(1.3). More precisely, it 
represents the pair of difference equations 

𝑣𝑣(𝑛𝑛) = �𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)                                                              (1.4𝑎𝑎)
𝑀𝑀

𝑘𝑘=0

 

𝑦𝑦(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) −�𝑎𝑎𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑘𝑘)                                                 (
𝑁𝑁

𝑘𝑘=1

1.4𝑏𝑏) 

From Eqn.(1.1), Fig.(1.1) can be viewed as an implementation of 𝐻𝐻(𝑧𝑧) through the decomposition 

𝐻𝐻(𝑧𝑧) = 𝐻𝐻2(𝑧𝑧)𝐻𝐻1(𝑧𝑧) = �
1

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

���𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘
𝑀𝑀

𝑘𝑘=0

�                         (1.5) 

or, equivalently, through the pair of equations 

𝑉𝑉(𝑧𝑧) = 𝐻𝐻1(𝑧𝑧)𝑋𝑋(𝑧𝑧) =  ��𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘
𝑀𝑀

𝑘𝑘=0

�𝑋𝑋(𝑧𝑧)                                   (1.6𝑎𝑎) 

𝑌𝑌(𝑧𝑧) = 𝐻𝐻2(𝑧𝑧)𝑉𝑉(𝑧𝑧) = �
1

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

�  𝑉𝑉(𝑧𝑧)                           (1.6𝑏𝑏) 

Figure (1.1) can be viewed as a cascade of 
two systems, the first representing the 
computation of 𝑣𝑣(𝑛𝑛) from 𝑥𝑥(𝑛𝑛) and the 
second representing the computation of 𝑦𝑦(𝑛𝑛) 
from 𝑣𝑣(𝑛𝑛). 
 
1.2 Direct Form II 
Since each of the two systems, 𝐻𝐻1(𝑧𝑧) and 
𝐻𝐻2(𝑧𝑧) is a linear time-invariant system, the 
order in which the two systems are cascaded 
can be reversed, as shown in Fig.(1.2), 
without affecting the overall system 
function. For convenience, we have assumed 
that 𝑀𝑀 =  𝑁𝑁. 
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𝐻𝐻(𝑧𝑧) = 𝐻𝐻1(𝑧𝑧)𝐻𝐻2(𝑧𝑧) = ��𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘
𝑀𝑀

𝑘𝑘=0

��
1

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

�                                      (1.7) 

or, equivalently, through the pair of equations 

𝑊𝑊(𝑧𝑧) = 𝐻𝐻2(𝑧𝑧)𝑋𝑋(𝑧𝑧) =  �
1

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

�𝑋𝑋(𝑧𝑧)                                   (1.8𝑎𝑎) 

𝑌𝑌(𝑧𝑧) = 𝐻𝐻1(𝑧𝑧)𝑊𝑊(𝑧𝑧) = ��𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘
𝑀𝑀

𝑘𝑘=0

�  𝑊𝑊(𝑧𝑧)                                            (1.8𝑏𝑏) 

In the time domain, Fig.(1.2) and, equivalently, Eqn.(1.8) can be represented by the pair of 
difference equations 

𝑤𝑤(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) −�𝑎𝑎𝑘𝑘𝑤𝑤(𝑛𝑛 − 𝑘𝑘)                                                 (
𝑁𝑁

𝑘𝑘=1

1.9𝑎𝑎) 

𝑦𝑦(𝑛𝑛) = �𝑏𝑏𝑘𝑘𝑤𝑤(𝑛𝑛 − 𝑘𝑘)                                                              (1.9𝑏𝑏)
𝑀𝑀

𝑘𝑘=0

 

 
 
The systems in Fig.(1.1) and (1.2) each have a 
total of (𝑁𝑁 +  𝑀𝑀) delay elements. However, the 
block diagram of Fig.(1.2) can be redrawn by 
noting that exactly the same signal, 𝑤𝑤(𝑛𝑛), is 
stored in the two chains of delay elements in the 
figure. Consequently, the two can be collapsed 
into one chain, as indicated in Fig.(1.3). 
 
The total number of delay elements in Fig.(1.3) 
is less than in either Fig.(1.1) or Fig.(1.2). 
Specifically, the minimum number of delays 
required is, in general, 𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁,𝑀𝑀). 
 
 
 
Example 1.1: Draw the block diagram and the 
signal flow graph using direct form I and II 
realization of the discrete-time system represented by the 
transfer function 

𝐻𝐻(𝑧𝑧) =
1 + 2𝑧𝑧−1

1 − 1.5𝑧𝑧−1 + 0.9𝑧𝑧−2
 

 
 
Solution: Comparing this system function with Eqn.(1.1), 
we find 𝑏𝑏0  =  1, 𝑏𝑏1  =  2, 𝑎𝑎1 = −1.5, and 𝑎𝑎2  = 0.9. 
Figure (1.4a) and (1.4b) depict a pictorial diagram for the 
direct form II and I, respectively. Figure (1.4a) and (1.4b) 
can be rewritten applying the signal flow graph, as shown 
in Fig.(1.5a) and (1.5b)  
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z-1 
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z-1 
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z-1 
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z-1 

z-1 

z-1 

z-1 

z-1 

z-1 
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(a)                                                                 (b) 

Fig(1.4) 
 
 
 
 
 
 
 
 

   (a)                                                             (b) 
Fig(1.5) 

H.W: Draw the block diagram and the signal flow graph using direct form I and II realization of the 
discrete-time system represented by the transfer function 

𝐻𝐻(𝑧𝑧) =
8𝑧𝑧3 − 4𝑧𝑧2 + 11𝑧𝑧 − 2
�𝑧𝑧 − 1

4�(𝑧𝑧2 − 𝑧𝑧 + 1
2)

 

1.3 Cascade Structure 
The cascade structure is derived by factoring the numerator and denominator polynomials of 𝐻𝐻(𝑧𝑧): 

𝐻𝐻(𝑧𝑧) =
∑ 𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘𝑀𝑀
𝑘𝑘=0

1 + ∑ 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘𝑁𝑁
𝑘𝑘=1

= 𝐴𝐴 �
1 − 𝛽𝛽𝑘𝑘𝑧𝑧−1

1 − 𝛼𝛼𝑘𝑘𝑧𝑧−1

max {𝑁𝑁,𝑀𝑀}

𝑘𝑘=1

                                            (1.10) 

This factorization corresponds to a cascade of first-order filters, each having one pole and one zero. 
In general the coefficients 𝛼𝛼𝑘𝑘 and 𝛽𝛽𝑘𝑘 will be complex. However, if ℎ(𝑛𝑛) is real, the roots of 𝐻𝐻(𝑧𝑧) 
will occur in complex conjugate pairs, and these complex conjugate factors may be combined to 
form second-order factors with real coefficients: 

𝐻𝐻𝑘𝑘(𝑧𝑧) =
1 + 𝛽𝛽1𝑘𝑘𝑧𝑧−1 + 𝛽𝛽2𝑘𝑘𝑧𝑧−2

1 + 𝛼𝛼1𝑘𝑘𝑧𝑧−1 + 𝛼𝛼2𝑘𝑘𝑧𝑧−2
 

There is considerable flexibility in how a system may be implemented in cascade form. For 
example, there are different pairings of the poles and zeros and different ways in which the sections 
may be ordered. For example the system 

𝐻𝐻(𝑧𝑧) =
1 + 2𝑧𝑧−1 + 𝑧𝑧−2

1 − 0.75𝑧𝑧−1 + 0.125𝑧𝑧−2
 

 
has a direct form I and direct form II structures shown in Fig.(1.6) 

 
                                              (a)                                                      (b) 

Fig.(1.6) 

𝑥𝑥(𝑛𝑛) 𝑥𝑥(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 

𝑥𝑥(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 
z-1 

z-1 

2 1.5 

-0.9 

𝑥𝑥(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 
z-1 

2 1.5 

-0.9 
z-1 

z-1 

𝑥𝑥(𝑛𝑛) 𝑥𝑥(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 
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Alternatively, to illustrate the cascade structure, we can use first-order systems by expressing 𝐻𝐻(𝑧𝑧) 
as a product of first-order factors, as in 

𝐻𝐻(𝑧𝑧) =
1 + 2𝑧𝑧−1 + 𝑧𝑧−2

1 − 0.75𝑧𝑧−1 + 0.125𝑧𝑧−2
=

(1 + 𝑧𝑧−1)(1 + 𝑧𝑧−1)
(1 − 0.5𝑧𝑧−1)(1 − 0.25𝑧𝑧−1) 

Since all of the poles and zeros are real, a cascade structure with first-order sections has real 
coefficients. If the poles and/or zeros were complex, only a second-order section would have real 
coefficients. Fig.(1.7) shows two equivalent cascade structures. 
 

 
Fig.(1.7): (a) Direct form I subsections.(b) Direct form II subsections. 

 
1.4 Parallel Structure 
An alternative to factoring 𝐻𝐻(𝑧𝑧) is to expand the system function using a partial fraction expansion. 
For example, with 

𝐻𝐻(𝑧𝑧) = 𝐴𝐴
∏ (1 − 𝛽𝛽𝑘𝑘𝑧𝑧−1)𝑀𝑀
𝑘𝑘=1

∏ (1 − 𝛼𝛼𝑘𝑘𝑧𝑧−1)𝑁𝑁
𝑘𝑘=1

 

If 𝑁𝑁 >  𝑀𝑀 and 𝛼𝛼𝑖𝑖 ≠ 𝛼𝛼𝑘𝑘 (the roots of the denominator polynomial are distinct), 𝐻𝐻(𝑧𝑧) may be 
expanded as a sum of N first-order factors as follows: 

𝐻𝐻(𝑧𝑧) = �
𝐴𝐴𝑘𝑘

1 − 𝛼𝛼𝑘𝑘𝑧𝑧−1

𝑁𝑁

𝑘𝑘=1

 

where the coefficients 𝐴𝐴𝑘𝑘 and 𝛼𝛼𝑘𝑘 are, in general, complex. This expansion corresponds to a sum of 
N first-order system functions and may be realized by connecting these systems in parallel. If ℎ(𝑛𝑛) 
is real, the poles of 𝐻𝐻(𝑧𝑧) will occur in complex conjugate pairs, and these complex roots in the 
partial fraction expansion may be combined to form second-order systems with real coefficients: 

𝐻𝐻(𝑧𝑧) = �
𝛾𝛾0𝑘𝑘 + 𝛾𝛾1𝑘𝑘𝑧𝑧−1

1 + 𝛼𝛼1𝑘𝑘𝑧𝑧−1 + 𝛼𝛼2𝑘𝑘𝑧𝑧−2

𝑁𝑁𝑠𝑠

𝑘𝑘=1

 

Shown in Fig.(1.8) is a sixth-order filter implemented as a parallel connection of three second-order 
direct form II systems. If  𝑁𝑁 ≤ 𝑀𝑀, the partial fraction expansion will also contain a term of the form 

𝑐𝑐0 + 𝑐𝑐1𝑧𝑧−1 + ⋯+ 𝑐𝑐𝑀𝑀−𝑁𝑁𝑧𝑧−(𝑀𝑀−𝑁𝑁) 

which is an FIR filter that is placed in parallel with the other terms in the expansion of 𝐻𝐻(𝑧𝑧). 
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Fig.(1.8) 
The parallel-form realization for the system with a second-order section is shown in Fig.(1.9a). 

𝐻𝐻(𝑧𝑧) =
1 + 2𝑧𝑧−1 + 𝑧𝑧−2

1 − 0.75𝑧𝑧−1 + 0.125𝑧𝑧−2
= 8 +

−7 + 8𝑧𝑧−1

1 − 0.75𝑧𝑧−1 + 0.125𝑧𝑧−2
 

Since all the poles are real, we can obtain an alternative parallel form realization by expanding 𝐻𝐻(𝑧𝑧) 
as 

𝐻𝐻(𝑧𝑧) = 8 +
18

1 − 0.5𝑧𝑧−1
−

25
1 − 0.25𝑧𝑧−1

 
The resulting parallel form with first-order sections is shown in Fig.(1.9b). 

 
 (a)                                    Fig.(1.9)                                     (b) 

𝑥𝑥(𝑛𝑛) 𝑥𝑥(𝑛𝑛) 
𝑦𝑦(𝑛𝑛) 𝑦𝑦(𝑛𝑛) 
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2. Structures for FIR Systems 
A causal FIR filter has a system function that is a polynomial in 𝑧𝑧−1: 

𝐻𝐻(𝑧𝑧) = �ℎ(𝑛𝑛)𝑧𝑧−𝑛𝑛
𝑁𝑁

𝑛𝑛=0

 

For an input 𝑥𝑥(𝑛𝑛), the output is 

𝑦𝑦(𝑛𝑛) = �ℎ(𝑘𝑘)𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑁𝑁

𝑘𝑘=0

 

2.1 Direct Form 
The most common way to implement an FIR filter is in direct from using a tapped delay line as 
shown in the figure below 

 
2.2 Cascade Form 
For a causal FIR filter, the system function may be factored into a product of first-order factors, 

𝐻𝐻(𝑧𝑧) = �ℎ(𝑛𝑛)𝑧𝑧−𝑛𝑛
𝑁𝑁

𝑛𝑛=0

= 𝐴𝐴�(1 − 𝛼𝛼𝑘𝑘𝑧𝑧−1)
𝑁𝑁

𝑘𝑘=1

 

where 𝛼𝛼𝑘𝑘 for 𝑘𝑘 =  1, . . . ,𝑁𝑁 are the zeros of 𝐻𝐻(𝑧𝑧). If ℎ(𝑛𝑛) is real, the complex roots of 𝐻𝐻(𝑧𝑧) occur 
in complex conjugate pairs, and these conjugate pairs may be combined to form second-order 
factors with real coefficients, 

𝐻𝐻(𝑧𝑧) = 𝐴𝐴�[1 + 𝑏𝑏𝑘𝑘(1)𝑧𝑧−1 + 𝑏𝑏𝑘𝑘(2)𝑧𝑧−2]
𝑁𝑁𝑠𝑠

𝑘𝑘=1

 

𝐻𝐻(𝑧𝑧) may be implemented as a cascade of second-order FIR filters as illustrated in Figure below. 

 
 
3. IIR FILTER DESIGN 
3.1 Butterworth Filters 
A unity-gain Butterworth low-pass filter has a transfer function whose magnitude is given by 

|𝐻𝐻𝑛𝑛(𝑗𝑗𝑗𝑗)| =
1

�1 + � 𝛺𝛺
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

                                                         (3.1) 

Where n is an integer that denotes the order of the filter. 
1. The cutoff frequency is 𝛺𝛺𝑐𝑐 rad/s for all values of n. 
2. If n is large enough, the denominator is always close to unity when 𝛺𝛺 < 𝛺𝛺𝑐𝑐 
3. In the expression for |𝐻𝐻𝑛𝑛(𝛺𝛺)|, the exponent of (𝛺𝛺/𝛺𝛺𝑐𝑐) is always even. 
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To derive 𝐻𝐻(𝑠𝑠), let us set 𝛺𝛺𝑐𝑐 = 1 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 (prototype filter), and note that 
 

|𝐻𝐻𝑛𝑛(𝑗𝑗𝑗𝑗)|2 = 𝐻𝐻𝑛𝑛(𝑗𝑗𝑗𝑗)𝐻𝐻𝑛𝑛(−𝑗𝑗𝑗𝑗) =
1

1 + 𝛺𝛺2𝑛𝑛 
 
But because s =𝑗𝑗𝑗𝑗, we can write 

|𝐻𝐻𝑛𝑛(𝑠𝑠)|2 = 𝐻𝐻𝑛𝑛(𝑠𝑠)𝐻𝐻𝑛𝑛(−𝑠𝑠) 
Thus, 

|𝐻𝐻𝑛𝑛(𝑠𝑠)|2 =
1

1 + (𝑠𝑠 𝑗𝑗⁄ )2𝑛𝑛 

 
The procedure for finding 𝐻𝐻𝑛𝑛(𝑠𝑠) for a given value of n is as follows: 
1. Find the roots of the polynomial 
 

1 + (𝑠𝑠/𝑗𝑗)2𝑛𝑛 = 0 
or 

𝑠𝑠2𝑛𝑛 = −1(𝑗𝑗)2𝑛𝑛 = (−1)𝑛𝑛+1 
 

 
 
 
2. Assign the left-half plane roots to 𝐻𝐻𝑛𝑛(𝑠𝑠) and the right-half plane roots to 𝐻𝐻𝑛𝑛(−𝑠𝑠). 
3. Combine terms in the denominator of 𝐻𝐻𝑛𝑛(𝑠𝑠) to form first- and second-order factors. 
 
𝐻𝐻𝑛𝑛(𝑠𝑠) can be written in the following form: 
 
 

 (3.2) 
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Table (3.1): Butterworth Polynomials in Standard and Factored Forms 

 

 
 
 
Example 3.1: Find the transfer function H2(s) for the normalized Butterworth filter of order 2. 
Solution: Since n = 2 we have the poles of H2(s)H2(−s) given by 

 

For n even For n odd 
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Therefore, the four roots are 

 
Using the left-half plane poles we can express the transfer 
function as follows 

 
3.2 The Order of a Butterworth Filter 
In the design of a low-pass filter, the filtering 
specifications are usually given in terms of the abruptness 
of the transition region, as shown in Figure beside. Once 
K1, 𝛺𝛺1, K2, and 𝛺𝛺2 are specified, the order of the 
Butterworth filter can be determined. For the Butterworth 
filter, 
 

𝐾𝐾1 = 20𝑙𝑙𝑙𝑙𝑙𝑙10
1

�1 + �𝛺𝛺1
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

 

= −10𝑙𝑙𝑙𝑙𝑙𝑙10 �1 + �
𝛺𝛺1
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

�                                                                                        (3.3) 

                           𝐾𝐾2 = 20𝑙𝑙𝑙𝑙𝑙𝑙10
1

�1 + �𝛺𝛺2
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

 

 = −10𝑙𝑙𝑙𝑙𝑙𝑙10 �1 + �
𝛺𝛺2
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

�                                                                                        (3.4) 

 
If we wish to satisfy our requirement of 𝛺𝛺𝑐𝑐 at 𝛺𝛺1 exactly and do better than our requirement at 𝛺𝛺2 
we use 

�
𝛺𝛺1
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

= 10−0.1𝐾𝐾1 − 1                                                                (3.5) 

while if we wish to satisfy our requirement at 𝛺𝛺2 and exceed our requirement at 𝛺𝛺1 we use 

�
𝛺𝛺2
𝛺𝛺𝑐𝑐
�
2𝑛𝑛

= 10−0.1𝐾𝐾2 − 1                                                             (3.6) 

Dividing Eqn.(3.5) by (3.6) to cancel 𝛺𝛺c we have 
 

�
𝛺𝛺1
𝛺𝛺2
�
2𝑛𝑛

=
10−0.1𝐾𝐾1 − 1
10−0.1𝐾𝐾2 − 1

                                                             (3.7) 

A simple closed form answer for n is easily obtained from this expression and is given by 

K1 

K2 

𝛺𝛺1 𝛺𝛺2 
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𝑛𝑛 = �
𝑙𝑙𝑙𝑙𝑙𝑙10[(10−0.1𝐾𝐾1 − 1)/(10−0.1𝐾𝐾2 − 1)]

2𝑙𝑙𝑙𝑙𝑙𝑙10 �
 𝛺𝛺1
𝛺𝛺2
�

�                               (3.8) 

where⌈∙⌉ is the next larger integer. 
Example 3.2: 
a) Determine the order of a Butterworth filter that has a cutoff frequency of 1000 Hz and a gain of 

no more than -50 dB at 6000 Hz. 
b) What is the actual gain in dB at 6000 Hz? 
Solution: 
a) The critical requirements are 

𝛺𝛺1 = 𝛺𝛺𝑐𝑐 = 2𝜋𝜋(1000) 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠            𝐾𝐾1 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
1
√2
� = −3𝑑𝑑𝑑𝑑     

                                        𝛺𝛺2 = 2𝜋𝜋(6000)  𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠           𝐾𝐾2 ≤ −50 𝑑𝑑𝑑𝑑 
Substituting these requirements into Eqn.(3.8) gives  

𝑛𝑛 = �
𝑙𝑙𝑙𝑙𝑙𝑙10��10−0.1(−3) − 1�/�10−0.1(−50) − 1��

2𝑙𝑙𝑙𝑙𝑙𝑙10 �
2𝜋𝜋(1000)
2𝜋𝜋(6000)

�
� = ⌈3.21 ⌉ = 4 

Therefore, we need a 4th order Butterworth filter. 
b) We can use Eq. 3.4 to calculate the actual gain at 6000 Hz. The gain in decibels will be 

𝐾𝐾2(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) =  20 𝑙𝑙𝑙𝑙𝑙𝑙10

⎝

⎛ 1

�1 + �2𝜋𝜋(6000)
2𝜋𝜋(1000)�

2(4)

⎠

⎞ = −62.25 𝑑𝑑𝑑𝑑  

 
Example 3.3: 
a) Determine the order of a Butterworth filter whose magnitude is 10 dB or better less than the 

passband magnitude at 500 Hz and at least 60 dB less than the passband magnitude at 5000 Hz. 
b) Determine the cutoff frequency of the filter (in hertz). 
c) What is the actual gain of the filter (in decibels) at 5000 Hz? 
Solution: 
a) The critical requirements are 

𝛺𝛺1 = 2𝜋𝜋(500)𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠               𝐾𝐾1 = −10 𝑑𝑑𝑑𝑑     
                                                 𝛺𝛺2 = 2𝜋𝜋(5000)𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠            𝐾𝐾2 ≤ −60 𝑑𝑑𝑑𝑑 
 

𝑛𝑛 = �
𝑙𝑙𝑙𝑙𝑙𝑙10��10−0.1(−10) − 1�/�10−0.1(−60) − 1��

2𝑙𝑙𝑙𝑙𝑙𝑙10 �
500
5000

�
� = ⌈2.52 ⌉ = 3 

Therefore we need a 3rd order Butterworth filter to meet the specifications. 
b) To do better at 500 Hz, we have to use Eq. 3.5, to determine the cutoff frequency. 

�
2𝜋𝜋(500)

𝛺𝛺𝑐𝑐
�
2(3)

= 10−0.1(−10) − 1 

then, 𝛺𝛺𝑐𝑐= 2178.26 rad/s (fc= 346.68 Hz) 
c) The actual gain of the filter at 5000 Hz is 

𝐾𝐾2(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = 20 𝑙𝑙𝑙𝑙𝑙𝑙10

⎝

⎛ 1

�1 + � 5000
346.68

�
2(3)

⎠

⎞ = −69.54 𝑑𝑑𝑑𝑑. 
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3.3 Analog-to-Analog Transformations 
If we replace s of 𝐻𝐻(𝑠𝑠), the system function for a normalized low-pass filter, by 𝑠𝑠/Ω𝑢𝑢 , we get a 
new transfer function 𝐻𝐻′(𝑠𝑠), given by 

 
If we evaluate the magnitude of the transfer function 𝐻𝐻′(𝑠𝑠) at 𝑠𝑠 =  𝑗𝑗Ω to get the frequency response 
we have 

 
At the value of Ω = Ω𝑢𝑢 we have 

 
That is, the frequency response for the new transfer function evaluated at Ω = Ω𝑢𝑢 is equal to the 
value of the normalized transfer function at Ω =  1. In a sense we have moved the cutoff frequency 
from 1 rad/sec to Ω𝑢𝑢 rad/sec and thus have a scaling of the frequency axis. Similar transformations 
can be defined for taking low-pass transfer functions to high-pass, bandpass and bandstop transfer 
functions. Table (3.2) gives these transformations. 
 
 
 
 

 
 
Example 3.4: Design an analog Butterworth filter that has a −2 dB or better cutoff frequency of 20 
rad/sec and at least 10 dB of attenuation at 30 rad/sec. 
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Solution.The critical requirements are 

Ω1  =  20,  𝐾𝐾1 =  −2 ,    Ω2  =  30,  𝐾𝐾2 =  −10 
 

 
Using this value of n to exactly satisfy the - 2 dB requirement gives 

 
The normalized low-pass Butterworth filter for n = 4, can be found from Table (3.1) as 

 
Applying a low-pass to low-pass transformation, 𝑠𝑠→𝑠𝑠/Ω𝑐𝑐, with Ω𝑐𝑐  =  21.3868 gives the desired 
transfer function as follows: 

𝐻𝐻(𝑠𝑠) = 𝐻𝐻4(𝑠𝑠)|𝑠𝑠→𝑠𝑠/21.3868 =
1

�� 𝑠𝑠
21.3868

�
2

+ 0.76536 � 𝑠𝑠
21.3868

� + 1�
×

1

�� 𝑠𝑠
21.3868

�
2

+ 1.84776 � 𝑠𝑠
21.3868

�+ 1�

=
2.09210 × 105

(𝑠𝑠2 + 16.3686𝑠𝑠 + 457.394)(𝑠𝑠2 + 39.5176𝑠𝑠 + 457.394)
 

3.4 Design of Bandpass Butterworth Filters 
The procedures for the design of a bandpass filter HBP(s), to satisfy the given set of specifications is 
composed of two steps. 
1. Design a low-pass filter 𝐻𝐻𝐿𝐿𝐿𝐿(𝑠𝑠) with 𝛺𝛺𝑟𝑟, 
2. Apply the low-pass to bandpass transformation using the desired Ωu  and Ω𝑙𝑙. 

 
 
Example 3.5: Design an analog bandpass filter with the following characteristics: 
(a)  -3.0103 dB upper and lower cutoff frequency of 20 kHz and 50 Hz respectively. 
(b) A stopband attenuation of at least 20 dB at 20 Hz and 45 kHz. 
Solution: From the specifications above we can identify the following critical frequencies: 
Ω1 = 2π(20) = 125.663 rad/sec 
Ω2 = 2π (45) ×103 = 2.82743 × 105 rad/sec 
Ω𝑢𝑢 = 2π (20) ×103 = 1.25663 × 105 rad/ sec 
Ω𝑙𝑙 = 2π (50) = 314.159 rad/sec 
Also the low-pass prototype must satisfy 

 
From Table (3.2) 

A = 2.5053 
B = 2.2545 

Since, 
 


