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4.1   Definition  

Boolean algebra is the mathematics of digital logic in which the values of the 

variables are the truth values true and false, usually denoted 1 and 0, 

respectively. Basic knowledge of Boolean algebra is indispensable to the study 

and analysis of logic circuits. Variable, complement, and literal are terms used 

in Boolean algebra. A variable is a symbol (usually an italic uppercase letter 

or word) used to represent an action, a condition, or data. Any single variable 

can have only a 1 or a 0 value. The complement is the inverse of a variable 

and is indicated by a bar over the variable (overbar). 

There are four connecting symbols used in Boolean algebra. 

1. Equal sign (=): This refers to the sign of equality as in mathematics. 

2. Multiplication sign (·): It refers to the AND operation. 

3. Plus sign (+): This refers to the OR operation. 

4. Inversion sign (‘) or (−): This operation performs a complement of the input 

given to the logic gate. 

 

 

4.2 Laws of Boolean Algebra 

 
The basic laws of Boolean algebra—the commutative laws for addition and 

multiplication, the associative laws for addition and multiplication, and the 

distributive law—are the same as in ordinary algebra. Each of the laws is 

illustrated with two or three variables, but the number of variables is not 

limited to this. 
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4.2.1    Commutative Laws 

The commutative law of addition for two variables is written as 

A + B = B + A 

 

  

 

Application of commutative law of addition. 
 

The commutative law of multiplication for two variables is 

AB = BA 

 

 

 

Application of commutative law of multiplication. 

 

4.2.2    Associative Laws 

The associative law of addition is written as follows for three variables: 

A + (B + C) = (A + B) + C 

 

 

 

Application of associative law of addition. 

The associative law of multiplication is written as follows for three variables: 

A (BC) = (AB) C 
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This law states that it makes no difference in what order the variables are 

grouped when ANDing more than two variables. Figure illustrates this law 

as applied to 2-input AND gates. 

 

 

 

 

4.2.3    Distributive Law 

The distributive law is written for three variables as follows: 

A (B + C) = AB + AC 

 

 

 

 
 

 
 

4.3 Rules of Boolean Algebra 
 

The table below lists 12 basic rules that are useful in manipulating and 

simplifying Boolean expressions. 

 

 

 

 

 

    

A, B, or C can represent a single variable or a combination of variables. 
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Rule 1:    A + 0 = A  

A variable ORed with 0 is always equal to the variable. If the input variable A 

is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, 

which is also equal to A. 

   

 

 

 

 

 

Rule 2:    A + 1 = 1 A variable ORed with 1 is always equal to 1. A 1 on an 

input to an OR gate produces a 1 on the output, regardless of the value of the 

variable on the other input. 

  

 

 

 

 

Rule 3:   𝑨 . 𝟎 =  𝟎  

A variable ANDed with 0 is always equal to 0. Any time one input to an AND 

gate is 0, the output is 0, regardless of the value of the variable on the other 

input. 
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Rule 4:    𝑨 . 𝟏 =  𝑨     

A variable ANDed with 1 is always equal to the variable. If A is 0, the output 

of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both 

inputs are now 1s.   

   

 

 

 

 

 

Rule 5:     A + A = A  

A variable ORed with itself is always equal to the variable. If A is 0, then                     

0 + 0 = 0; and if A is 1, then 1 + 1 = 1. 

 

 

  

 

 

 

Rule 6:    𝑨 + 𝑨 = 𝟏  

A variable ORed with its complement is always equal to 1. If A is 0, then                        

0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. 
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Rule 7:     𝑨 ∙ 𝑨 = 𝑨 

A variable ANDed with itself is always equal to the variable. If A = 0, then                 

0 #0 = 0; and if A = 1, then 1 #1 = 1. 

   

 

 

 

 

 

Rule 8:    𝑨 ∙ 𝑨 = 𝟎  

A variable ANDed with its complement is always equal to 0. Either A or A 

will always be 0; and when a 0 is applied to the input of an AND gate, the 

output will be 0 also. 

 

 

  

 

 

 

Rule 9:    𝑨̅ = 𝑨  

The double complement of a variable is always equal to the variable. If you 

start with the variable A and complement (invert) it once, you get A. If you 

then take A and complement (invert) it, you get A, which is the original 

variable. 

  

 

 

 

 

 



51 
 

18/2/2025 

 

Rule 10:    A + AB = A  

This rule can be proved by applying the distributive law, rule 2, and rule 4 as 

follows: 

𝐴 + 𝐴𝐵 = 𝐴 . 1 + 𝐴𝐵 = 𝐴 (1 +  𝐵)    Factoring (distributive law) 

=  𝐴 . 1   Rule 2: (1 +  𝐵)  =  1  

=  𝐴        Rule 4: 𝐴 . 1 = 𝐴 
 

The proof is shown in below, which shows the truth table and the resulting 

logic circuit simplification.  

 

   

 

 

 

 

 

 

 

 

Rule 11:   𝑨 + 𝑨𝑩 = 𝑨 + 𝑩  

This rule can be proved as follows: 

𝐴 + 𝐴𝐵 =  (𝐴 +  𝐴𝐵) + 𝐴𝐵      Rule 10: A = A + AB 

=(𝐴𝐴 +  𝐴𝐵) + 𝐴𝐵     Rule 7: A = AA 

=AA +  AB +  AA + AB    Rule 8: adding AA  =  0 

= (A + A)(A +  B)    Factoring 

= 1 . (A +  B)     Rule 6: A + A = 1 

= A + B    Rule 4: drop the 1 



52 
 

18/2/2025 

 

The proof is shown in the table below, which shows the truth table and the 

resulting logic circuit simplification. 

   

 

 

 

 

 

 

 

 

Rule 12:      (A + B) (A + C) = A + BC 

 This rule can be proved as follows: 

(A + B)(A + C) = AA + AC + AB + BC     Distributive law 

= A + AC + AB + BC     Rule 7: AA = A 

= A(1 +  C)  +  AB +  BC   Factoring (distributive law) 

= A .1 + AB + BC    Rule 2: 1 + C = 1 

= A(1 +  B) +  BC  Factoring (distributive law) 

= A . 1 +  BC             Rule 2: 1 + B = 1 

= A + BC                  Rule 4: A. 1 = A 

 

The proof is shown in the table below, which shows the truth table and the 

resulting logic circuit simplification. 

 

 

 

 



53 
 

18/2/2025 

 

   

 

 

 

 

 

 

 

 

H.W: 

1. Apply the associative law of addition to the expression A + (B + C + D). 

2. Apply the distributive law to the expression A(B +  C +  D). 

 

4.4 DeMorgan’s Theorems 
 

DeMorgan, a mathematician, proposed two theorems that are an important 

part of Boolean algebra. In practical terms, DeMorgan’s theorems provide 

mathematical verification of the equivalency of the NAND and negative-OR 

gates and the equivalency of the NOR and negative-AND gates. 

 

4.4.1  DeMorgan’s first theorem  
 

The complement of a product of variables is equal to the sum of the 

complements of the variables. 

Stated another way, 

The complement of two or more ANDed variables is equivalent to the OR of 

the complements of the individual variables. 

The formula for expressing this theorem for two variables is 
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𝑋𝑌̅̅ ̅̅ =  𝑋̅ + 𝑌̅     ………   (1) 

 

4.4.2 DeMorgan’s second theorem 
 

The complement of a sum of variables is equal to the product of the 

complements of the variables. 

Stated another way, 

The complement of two or more ORed variables is equivalent to the AND of 

the 

complements of the individual variables. 

The formula for expressing this theorem for two variables is 

 

𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅𝑌̅    ………   (2) 

Figure below shows the gate equivalencies and truth tables for Equations 1 

and 2. 
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Example:  Apply DeMorgan’s theorems to the expressions  

Sol. 

 

 

 

Example:  Apply DeMorgan’s theorems to the expressions 

Sol. 

 

 

 

Example:  Prove that   A+AB = A  

Sol.  

         A+AB = A (1+B) 

                     = A . 1 = A 

 

Example:  Prove that   𝐴 + 𝐴̅𝐵 = 𝐴 + 𝐵  

Sol.            

                 𝐴 + 𝐴̅𝐵 = (𝐴 + 𝐴𝐵) + 𝐴̅𝐵 

                                 = 𝐴 + 𝐵(𝐴 + 𝐴̅) 

                                 = 𝐴 + 𝐵. 1 

                                 = 𝐴 + 𝐵 
 

Example:  Apply DeMorgan’s theorems to each expression: 
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Sol. 

 

 

 

 

Example:  Prove that   (𝐴 + 𝐵)(𝐴 + 𝐶)  =  𝐴 + 𝐵𝐶  

 

Sol. 

               (A+B)(A+C)  = AA + AC + AB + BC 
                                     = A + AC + AB + BC  

            = A + (1+C) + AB + BC 

                                     = A.1 + AB + BC 

                                     = A + AB + BC 

            = 𝐴(1 + 𝐵)  +  𝐵𝐶           

                                     = A.1 + BC 

            = A + BC 
 

H.W.: 
 

Apply DeMorgan’s theorems to the following expressions: 

1.                                             2.                                3. 

2. Apply DeMorgan’s theorems to the expression    
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4.5 Logic Simplification Using Boolean Algebra 

 
A logic expression can be reduced to its simplest form or changed to a more 

convenient form to implement the expression most efficiently using Boolean 

algebra. 

Example: Using Boolean algebra techniques, simplify this expression:                                                                     

000000000AB + A(B + C) + B(B + C)  

Sol. 

       AB + AB + AC + BB + BC   distributive law to the second and third terms 

       AB + AB + AC + B + BC     (BB = B) rule 7 

       AB + AC + B + BC    (AB + AB = AB)  rule 5 

       AB + AC + B    (B + BC = B) rule 10 

       B + AC   (AB + B = B)   rule 10 
 

The figure below shows that the simplification process significantly reduced 

the number of logic gates required to implement the expression. Part (a) shows 

that 5 gates are required to implement the expression in its original form; 

however, only 2 gates are needed for the simplified expression, shown in part 

(b). It is important to realize that these two gate circuits are equivalent.   
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Example:   Simplify the following Boolean expression:  

𝐴𝐵 + 𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐴̅𝐵̅𝐶 
 

Sol. 

(𝐴𝐵̅̅ ̅̅ )(𝐴𝐶̅̅ ̅̅ ) + 𝐴̅𝐵̅𝐶     DeMorgan’s theorem 

(𝐴̅ + 𝐵̅)(𝐴̅ + 𝐶̅) + 𝐴̅𝐵̅𝐶      DeMorgan’s theorem 

𝐴̅𝐴̅ + 𝐴̅𝐶̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅ + 𝐴̅𝐵̅𝐶      distributive law to the two terms 

𝐴̅𝐵̅ + 𝐴̅𝐵̅𝐶 = 𝐴̅𝐵̅(1 + 𝐶) =  𝐴̅𝐵̅      rule 7 (𝐴̅𝐴̅ = 𝐴̅) = A) to the first term  

𝐴̅ + 𝐴̅𝐶̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅      rule 10 to the third and last terms. 

𝐴̅ + 𝐴̅𝐶̅ = 𝐴̅(1 + 𝐶̅) =  𝐴̅      rule 10 to the first and second terms 

𝐴̅ + 𝐴̅𝐵̅ + 𝐵̅𝐶̅       

𝐴̅ + 𝐴̅𝐵̅ = 𝐴̅(1 + 𝐵̅) = 𝐴̅       rule 10  to the first and second terms. 

𝐴̅ + 𝐵̅𝐶̅   
     
 

H.W.: 

 

 

 

 

 

 

 
 

4.6 Boolean Expressions For Truth Table 

All Boolean expressions, regardless of their form, can be converted into either 

of two standard forms: the sum-of-products form or the product-of-sums form. 

Standardization makes the evaluation, simplification, and implementation of 

Boolean expressions much more systematic and easier. 
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4.6.1 The Sum-of-Products (SOP) Form (Minterm) 

This form is sometimes called "minterm". A product term that contains each 

of the n-variables factors in either complemented or uncomplemented form 

for output digits "1" only, is called SOP. For example for the truth table below: 
 

Input Output  

A B C F  

0 0 0 1    𝐴̅𝐵̅𝐶̅ 

0 0 1 0     𝐴̅𝐵̅𝐶 

0 1 0 1     𝐴̅𝐵𝐶̅ 
0 1 1 1   𝐴̅𝐵𝐶 

1 0 0 0   𝐴𝐵̅𝐶̅ 
1 0 1 0   𝐴𝐵̅𝐶  

1 1 0 1   𝐴𝐵𝐶̅ 
1 1 1 1   𝐴𝐵𝐶 

 
 

The Logical SOP expression for the output digit "1" is written as" 

𝐹 = 𝐴̅𝐵̅𝐶̅ + 𝐴̅𝐵𝐶̅ + 𝐴̅𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶                 

This function com be put in another form such as: 

𝐹 = ∑ 0, 2,3,6,7                                             

Since F= 1 in rows  0, 2,3,6,7 only. 

The second form is called the Canonical Sum of Products (Canonical SOP). 

                   

 

4.6.2 The Product-of-Sum (POS) Form (Maxterm) 

A Logical equation can also be expressed as a product of sum (POS) form 

(sometimes this method is called "Maxterm". This is done by considering the 

combination for F=0 (output = 0).  

So for the above example from the truth table F=0 is in rows 1, 4, 5 hence: 
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𝐹̅(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵̅𝐶 + 𝐴𝐵̅𝐶̅ + 𝐴𝐵̅𝐶  

𝐹(𝐴, 𝐵, 𝐶) = 𝐹̅̅(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵̅𝐶 + 𝐴𝐵̅𝐶̅ + 𝐴𝐵̅𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   

                  = 𝐴̅𝐵̅𝐶̅̅ ̅̅ ̅̅ ∙ 𝐴𝐵̅𝐶̅̅̅ ̅̅ ̅̅ ∙ 𝐴𝐵̅𝐶̅̅ ̅̅ ̅̅  

                    = (𝐴̿ + 𝐵̿ + 𝐶̅) ∙ (𝐴̅ + 𝐵̿ + 𝐶̿) ∙ (𝐴̅ + 𝐵̿ + 𝐶̅) 

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅) ∙ (𝐴̅ + 𝐵̿ + 𝐶̿) ∙ (𝐴̅ + 𝐵̿ + 𝐶̅)       

This is POS form. POS form can be expressed as: 

𝐹 = ∏ 1, 4, 5 

This form is called the Canonical Product of Sum (Canonical POS).  

 

Example:   Put F in SOP and POS form and simplifying it:  
 

 

 

 

 

Sol. 

𝑆𝑂𝑃:   𝐹(𝐴, 𝐵) = ∑ 0,1,3                                                                               

                          =  𝐴̅𝐵̅  + 𝐴̅𝐵 + 𝐴𝐵 

                            =  𝐴̅ (𝐵̅  + 𝐵 ) +  𝐴𝐵  

                             =  𝐴̅ +  𝐴𝐵 

            𝐹(𝐴, 𝐵) =  𝐴̅ + 𝐵         
 

  𝑃𝑂𝑆:  𝐹(𝐴, 𝐵) =  ∏ 2            

            𝐹(𝐴, 𝐵) =  𝐴̅ + 𝐵       
 

 

A B F 

0 0 1 

0 1 1 

1 0 0 

1 1 1 
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Example:   Put in canonical SOP form 

                   𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵̅𝐶 + 𝐴̅𝐵𝐶 + 𝐴𝐵𝐶 

Sol. 

             𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐵̅𝐶 + 𝐴̅𝐵𝐶 + 𝐴𝐵𝐶 

                                         101      011       111 

             𝐹(𝐴, 𝐵, 𝐶) = ∑ 3, 5, 7  

 

Example:   Put in canonical POS form and draw the truth table, then determine 

canonical SOP and SOP form 

                    𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶̅)(𝐴 + 𝐵̅ + 𝐶)(𝐴̅ + 𝐵̅ + 𝐶̅)(𝐴̅ + 𝐵̅ + 𝐶) 

Sol. 

  𝐹(𝐴, 𝐵, 𝐶) =          001              010                 111                110   

                                 M1               M2                 M3               M4 

  𝐹(𝐴, 𝐵, 𝐶) =    ∏ 1,2,6,7 
 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 0 

            𝐹(𝐴, 𝐵, 𝐶) =    ∑ 0,3,4,5 

           𝐹(𝐴, 𝐵, 𝐶) =    𝐴̅𝐵̅𝐶̅ + 𝐴̅𝐵𝐶 + 𝐴𝐵̅𝐶̅ + 𝐴𝐵̅𝐶 
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Example:  Represent F1, F2 in SOP & POS forms then simplified F1 and F2 

using Boolean algebra.   
 

A B C F1 F2 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 0 
 

          Sol.  

In SOP: 

       𝐹1(𝐴, 𝐵, 𝐶) = ∑ 1,2,3,5,6,7 

                     =    𝐴̅𝐵̅𝐶 + 𝐴̅𝐵𝐶̅ + 𝐴̅𝐵𝐶 + 𝐴𝐵̅𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶 

                     =    𝐴̅(𝐵̅𝐶 + 𝐵𝐶̅ + 𝐵𝐶) + 𝐴(𝐵̅𝐶 + 𝐵𝐶̅ + 𝐵𝐶) 

                      =    𝐴̅[𝐵̅𝐶 + 𝐵(𝐶̅ + 𝐶)] + 𝐴[𝐵̅𝐶 + 𝐵(𝐶̅ + 𝐶)] 

                      =    𝐴̅(𝐵̅𝐶 + 𝐵) + 𝐴(𝐵̅𝐶 + 𝐵) 

                      =    (𝐴̅ + 𝐴) ∙ (𝐵̅𝐶 + 𝐵) 

                      =  𝐵̅𝐶 + 𝐵   

           𝐹1(𝐴, 𝐵, 𝐶) =  𝐵 + 𝐶 

          In POS: 

            𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,4 

                                 =    (𝐴 + 𝐵 + 𝐶) ∙ (𝐴̅ + 𝐵 + 𝐶) 

                                 =    𝐴𝐴̅ + 𝐴𝐵 + 𝐴𝐶 + 𝐴̅𝐵 + 𝐵𝐵 + 𝐵𝐶 + 𝐶𝐴̅ + 𝐶𝐵 + 𝐶𝐶 

                                 =  𝐴𝐵 + 𝐴𝐶 + 𝐴̅𝐵 + 𝐵 + 𝐵𝐶 + 𝐴̅𝐶 + 𝐵𝐶 + 𝐶 

                                 =  𝐴𝐵 + 𝐴𝐶 + 𝐴̅𝐵 + 𝐵(1 + 𝐶) + 𝐴̅𝐶 + 𝐶(1 + 𝐵) 
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                                 =  𝐴𝐵 + 𝐴𝐶 + 𝐴̅𝐵 + 𝐵 + 𝐴̅𝐶 + 𝐶 

                                 =  𝐵(𝐴 + 𝐴̅) + 𝐶(𝐴 + 𝐴̅) + 𝐵 + 𝐶 

                                 =  𝐵 + 𝐶 + 𝐵 + 𝐶 

           𝐹1(𝐴, 𝐵, 𝐶) =  𝐵 + 𝐶 

 

H.W.:  Solution for F2 

 

4.6.3 Converting SOP to POS and Vice Versa 

The binary values of the product terms in a given SOP expression aren't 

present in the equivalent POS expression. Therefore to convert from standard 

SOP to standard POS the following steps may be used: 

Step 1: Evaluate each product term in the SOP expression that determines the 

binary numbers representing the product term. 

Step 2: Determine all the binary numbers not included in the evaluation in    

step 1.  

Step 3: Write the equivalent sum term for each binary number from step 2 and 

express it in POS form. 

Note: A Standard SOP expression is one in which all the variables in the 

domain appear in each term of the expression. If any variable is missing from 

any term, we must add these missing variables to that term, by multiplying the 

term by the variables missing. 

For example, if variable B is missing from the term AC, we must multiply this 

term AC, by 𝐵 + 𝐵̅ to make the expression standard SOP. 

                               𝐴𝐶(𝐵 + 𝐵̅) 

Note: using a similar procedure explained above (steps 1, 2, and 3) we can 

convert from standard POS to standard SOP. If there is missing any variable 

from any term, we must add the missing variable multiplied by its complement 

to that term.    

For example if variable A is missing from the term (𝐵 + 𝐶̅) we must add 𝐴𝐴̅  
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                             [(𝐵 + 𝐶̅) + 𝐴𝐴̅] 

                           = (𝐵 + 𝐶̅ + 𝐴)(𝐵 + 𝐶̅ + 𝐴̅) 

 

Example:   Put in canonical POS form and draw the truth table, then 

determine canonical SOP and SOP form 

                    𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶 

          Sol. 

 1st method 

  𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶            

                    = 𝐵(𝐴 + 𝐴̅)(𝐶̅ + 𝐶) + 𝐴𝐶(𝐵 + 𝐵̅) 

                    = 𝐵(𝐴𝐶 + 𝐴𝐶̅ + 𝐴̅𝐶 + 𝐴̅𝐶̅) + 𝐴𝐵𝐶 + 𝐴𝐵̅𝐶 

                    = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴̅𝐵𝐶 + 𝐴̅𝐵𝐶̅ + 𝐴𝐵𝐶 + 𝐴𝐵̅𝐶 

                    = 𝐴𝐵𝐶 + 𝐴𝐵𝐶̅ + 𝐴̅𝐵𝐶 + 𝐴̅𝐵𝐶̅ + 𝐴𝐵̅𝐶  

                           111      110       011      010       101 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∑ 2,3,5,6,7 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,1,4 

     𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(𝐴̅ + 𝐵 + 𝐶)            
 

2nd method: 

    𝐹(𝐴, 𝐵, 𝐶) = 𝐵 + 𝐴𝐶            
 

A B C AC F= B+AC 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 1 

0 1 1 0 1 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 0 1 

1 1 1 1 1 
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  ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∑ 2,3,5,6,7 

 ∴ 𝐹(𝐴, 𝐵, 𝐶) =    ∏ 0,1,4 

    𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(𝐴̅ + 𝐵 + 𝐶)            

 

H.W.:  Convert the POS form to SOP form and find these canonical: 

            𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵)(𝐴̅ + 𝐶)(𝐴 + 𝐵 + 𝐶)            

 

4.7 The Karnaugh Map (K-map) 

A K- map provides a systematic method for simplifying Boolean expressions 

and, if properly used, will produce the simplest SOP or POS expression. As 

you have seen, the effectiveness of algebraic simplification depends on your 

familiarity with all the laws, rules, and theorems of Boolean algebra and on 

your ability to apply them. The K-map is an array of cells in which each cell 

represents a binary value of the input variables. The cells are arranged in a 

way so that simplification of a given expression is simply a matter of properly 

grouping the cells. The K-maps can be used for expressions with two, three, 

four, and five variables, but we will discuss only 2, 3, and 4 variables. The 

number of cells in a K-map, as well as the number of rows in a truth table. 
 

For 2 input variables, the number of cells is 22 = 4 cells 

 

 

 

 

 

 

 

 



66 
 

18/2/2025 

 

For 3 input variables, the number of cells is 23 = 8 cells 

 

 

 

 

 

 

 

And for 4 input variables, the number of cells is 24 = 16 cells 

 

 

 

 

 

 

 

 

4.7.1 The 2-variebles K - map  

1.  

         𝐹(𝐴, 𝐵) =  𝐵̅             𝑆𝑂𝑃             

         𝐹(𝐴, 𝐵) =  𝐵             𝑃𝑂𝑆                                             
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2.     

         𝐹(𝐴, 𝐵) = 𝐵̅ +  𝐴     𝑆𝑂𝑃 

         𝐹(𝐴, 𝐵) = 𝐴̅ 𝐵    𝑃𝑂𝑆  

 

 

 

3.   

         𝐹(𝐴, 𝐵) = 1 

 

 

 
 

4.7.2 The 3-variebles K - map  

1.  

 𝐹(𝐴, 𝐵, 𝐶) =  𝐵̅             𝑆𝑂𝑃   
           𝐹(𝐴, 𝐵, 𝐶) =  𝐵            𝑃𝑂𝑆    

 

 

 
2.  

     𝐹(𝐴, 𝐵, 𝐶) =  𝐶̅ + 𝐵̅             𝑆𝑂𝑃   

     𝐹(𝐴, 𝐵, 𝐶) =  𝐶𝐵          𝑃𝑂𝑆  
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4.7.3  The 4-variebles K – map 

1.   

        𝐹(𝐴, 𝐵) =  𝐵̅             𝑆𝑂𝑃   

        𝐹(𝐴, 𝐵) =  𝐵             𝑃𝑂𝑆   

 

 

 

 

 

 

2.  

        𝐹(𝐴, 𝐵) =  𝐵̅𝐷̅             𝑆𝑂𝑃   

        𝐹(𝐴, 𝐵) = 𝐵 + 𝐷             𝑃𝑂𝑆 

 

 

 

 

 

3.  

          𝐹(𝐴, 𝐵, 𝐶) =  𝐴 + 𝐶̅ + 𝐵̅ + 𝐷̅          𝑆𝑂𝑃 

          𝐹(𝐴, 𝐵, 𝐶) =  𝐴̅𝐵𝐶𝐷        𝑃𝑂𝑆 

 

 

 

 

Note: 

1. Number of 1's or 0's in one group must be 1, 2, 4, 8, and 16.  

2. We must take maximum number of 1's or 0's in one group. 
   



69 
 

18/2/2025 

 

Example:  Simplify the following SOP expression on a Karnaugh map: 

                 𝐹 =  𝐴̅𝐵̅𝐶̅𝐷̅  +  𝐴𝐵̅𝐶𝐷̅  +  𝐴𝐵̅𝐶̅𝐷̅ + 𝐴̅𝐶𝐷 +  𝐴𝐵̅𝐶𝐷̅ 

          Sol. 

                    𝐹 = 𝐵̅𝐷̅ + 𝐴̅𝐶𝐷 

 

 

 

 

 

 

 

 

 

Example:  Determine the simply expression by the truth table below using 

Karnaugh map method. 

                  

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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          Sol. 

                 𝐹 = 𝐴𝐵 + 𝐵̅𝐶̅ 

  

 

 

 

 

 

 

HW: Implement the Logic function specified in the above example. 

 

Example:  Simplify the following Boolean function in: 

(a)   SOP form     (b)   POS form  

                𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑(0, 1, 2, 5, 8, 9, 10)     

 

          Sol. 

 

 

 

 

 

 

 

(a) The 1's marked in the map represent all minterm of the function. 

The cells marked with 0's represent the Maxterm not included 

in the function and therefore the function will be:  
 

 𝐹 =  𝐵̅ 𝐶̅ + 𝐵̅𝐷̅ + 𝐴̅𝐶̅𝐷 
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(b) If the squares marked with 0's are combined we obtain the 

simplified POS form or the complement of F: 
 

 𝐹̅ = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷̅ 

  Applying DeMorgan's theorem by taking the complement of 

each side, we obtain the simplified function in POS form: 

 𝐹̅ = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷̅ 

 𝐹̅ = (𝐴𝐵) ∙ (𝐶𝐷) ∙ (𝐵𝐷̅) 

 𝐹̅ = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷̅) 

                     𝐹̅ = (𝐴 + 𝐵) ∙ (𝐶 + 𝐷) ∙ (𝐵 + 𝐷) 

 

Note: To use K-map for simplification a function expressed in POS form, 

follow these rules: 

1. Take the complement of the function. 

2. From the results write "0" in the Squares of POS form. Or convert the 

POS to SOP form, then follow the standard rules used to enter the 1's 

in the cells of K-map.  

 
 

4.7.4 Don't Care Conditions 

Sometimes a situation arises in which some input variable combinations are 

not allowed. For example, recall that in the BCD code, there are six invalid 

combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed 

states will never occur in an application involving the BCD code, they can be 

treated as “don’t care” terms with respect to their effect on the output. That is, 

for these “don’t care” terms either a 1 or a 0 may be assigned to the output; it 

really does not matter since they will never occur. The “don’t care” terms can 

be used to advantage on the Karnaugh map. The figure below shows that for 

each “doesn’t care” term, an X is placed in the cell. When grouping the 1s, the 

Xs can be treated as 1s to make a larger grouping or as 0s if they cannot be 

used to advantage. The larger a group, the simpler the resulting term will be. 
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The truth table describes a logic function that has a 1 output only when the 

BCD code for 7, 8, or 9 is present on the inputs. If the “don’t care” are used 

as 1s, the resulting expression for the function is A + BCD, as indicated in K-

map. If the “don’t care” is not used as 1s, the resulting expression is ABC + 

ABCD; so you can see the advantage of using “don’t care” terms to get the 

simplest expression. 

 

Example:  In a 7-segment display, each of the seven segments is activated for 

various digits. For example, segment-a is activated for the digits 0, 2, 3, 5, 6, 

7, 8, and 9, as illustrated in the figure below. Since each digit can be 

represented by a BCD code, derive an SOP expression for segment-a using the 

variables ABCD and then minimize the expression using a K - map.                  
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          Sol. 

The expression for segment-a is: 

 

Each term in the expression represents one of the digits in which 

segment-a is used. The Karnaugh map minimization is shown in the 

figure below. X’s (don’t care) are entered for those states that do not 

occur in the BCD code. 
 

  

 

 

 

 

 

 

 

From the K - map, the minimized expression for segment-a is: 

 

 

 


