Digital Electronic H.W

DR. INTEHAR ALJUBOURY 2ND ACADEMIC SEMESTER 2024 - 2025

CHAPTER I INTRODUCTORY

- Q1- A periodic digital waveform has a pulse width of 25 µs and a period of 150 µs. Determine the frequency and the duty cycle.
- Q2- If binary data are transferred on a USB at the rate of 480 million bits per second (480 Mbps), how long will it take to serially transfer 16 bits?
- Q3- Determine the duty cycle of the waveform in Figure below?

Q4- Answer the following:

- **1.** Define *binary*.
- **2.** What does *bit* mean?
- **3.** What are the bits in a binary system?
- **4.** How are the rise time and fall time of a pulse measured?
- **5.** Knowing the period of a waveform, how do you find the frequency?
- 6. Explain what a clock waveform is.
- **7.** What is the purpose of a timing diagram?
- 8. What is the main advantage of parallel transfer over serial transfer of binary data?

Chapter 2

Number Systems, Operations, and Codes

Q1- Convert the binary numbers to decim

- (a) 10010001 (b) 0.10111 (c) 10111101.011
- Q2- Convert the following decimal numbers to binary:
 - **(a)** 12
- **(b)** 25
- (c) 58
- Q3- Add the following binary numbers:
 - (a) 100 + 10
- **(b)** 110 + 100
- (c) 1111 + 1100
- Q4- Perform the following binary subtractions:
 - (a) 11 01
- **(b)** 11 10
- **(c)** 100 111
- Q5- Perform the indicated binary operations:
 - (a) 110×111
- **(b)** 1100 ÷ 011
- Q6- Determine the 2's complement of 11001011, 11000000.
- Q7- The BCD number for decimal 473 is
 - (a) 111011010
- **(b)** 110001110011
- (c) 010001110011
- (**d**) 010011110011
- Q8-Determine the 2's complement of each binary number:
 - (a) 11
- **(b)** 110
- **(c)** 1010
- (d) 1001

(h) 11000111

- (e) 101010
- **(f)** 11001
- (g) 11001100

(g) 44 (h) 57 (i) 69 (j) 98 (k) 125 Q10- Convert each of the BCD numbers to decimal: (a) 10000000 (b) 00100011011 (c) 001101000110 (d) 01000010000 (e) 011101010100 (f) 1000000000000 (g) 100101111000 (h) 00010110110	(1)	156
(a) 10000000 (b) 00100011011 (c) 001101000110 (d) 01000010000 (e) 011101010100 (f) 100000000000 (g) 100101111000 (h) 00010110100		
(c) 001101000110 (d) 01000010000 (e) 011101010100 (f) 1000000000000 (g) 100101111000 (h) 00010110100		
(e) 011101010100 (f) 10000000000000000(g) 100101111000 (h) 00010110100	1	
(g) 100101111000 (h) 00010110100	1	
)	
(i) 1001000000011000 (i) 01100110011	00011	
(i) 100100000011000 (j) 01100110011	00111	
11-Determine which of the following even parity codes as	e in en	ror:

- Q12-Determine which of the following odd parity codes are in error:
 - (a) 11110110
- **(b)** 00110001
- (c) 01010101010101010
- Q13-Apply CRC to the data bits 10110010 using the generator code 1010 to produce the transmitted CRC code.
- Q14- A 7-bit hamming code is received as 1011011. Find the error position and correct the code.
- Q15- If the data transmitted along with checksum is 10101001, 00111001, 00011101. But the data received at destination is **0**0101001, **1**0111001, 00011101. Find an error in data received and correct them.