
  
 

Run Time Environments 

Before we get into the low-level details of final code generation, we first take a 
look at the layout of memory and the runtime data structures for managing the 
stack and heap. 
 
Data Representation  
Simple variables: are usually represented by sufficiently large memory locations to 
hold them:  
  
 characters:   1 or 2 bytes  
 integers:       2, 4 or 8 bytes  
 floats:           4 to 16 bytes  
 boolean:       1 bit (most often at least 1 full byte used) 
 
During execution, allocation must be maintained by the generated code that is 
compatible with the scope and lifetime rules of the language. 
Typically there are three choices for allocating variables and parameters: 
 
– Assign them fixed locations in global memory (“static” allocation). 
– Put them on the processor stack. 
– Allocate them dynamically in memory managed by the program (the 
“heap”). 
 
Issues in Storage Organization 
 Recursion 
 Block structure and nesting (nested procedures). 
 Parameter passing (by value, reference, name). 
 Higher order procedures (procedures as parameters to other procedures). 
 Dynamic Storage Management (malloc, free). 
 
Storage Organization 
From the perspective of the compiler writer, the executing target program runs in 
its own logical address space in which each program value has a location. The 
management  and  organization  of  this  logical address space  is  shared between  
the  compiler,  operating system,  and target  machine.  The operating  system  
maps  the  logical  addresses  into  physical  addresses, which  are usually  spread  
throughout memory.  
 



  
 

 
Compiler-writer Perspective 

 
The  run-time  representation  of  an  object  program  in  the  logical  address  
space consists of  data and program areas as shown in figure below. The 
runtime storage organization might subdivide memory in this way. 
 

 
 
Storage for code and data: 
 
Code Area: Procedures, functions and methods 
Static Data Area: “Permanent” data with statically known size. 
Stack: Temporary Data with known lifetime (lifetime refers to the different 
periods of time for which a variable remains in existence) 
Heap: Temporary Data with unknown lifetime (dynamically allocated). 



  
 

We assume the run-time storage comes in blocks of contiguous bytes, where a 
byte is the smallest unit of addressable memory.  A byte is eight bit and four 
bytes form a machine word.  Multi byte objects are stored in consecutive bytes 
and given the address of the first byte. 
 
As discussed previously, the amount of storage needed for a name is determined 
from its type. An elementary data type, such as a character, integer, or float, 
can be stored in an integral number of bytes.  Storage for an aggregate type, such 
as an array or structure, must be large enough to hold all its components.  
 
The storage layout for data objects is strongly influenced by the addressing 
constraints of the target machine. On many machines, instructions to add 
integers may expect integers to be aligned, that is, placed at an address divisible by 
4. Although an array of ten characters needs only enough bytes to hold ten 
characters, a compiler may allocate 12 bytes to get the proper alignment, 
leaving 2 bytes unused. Space left unused due to alignment considerations is 
referred to as padding. When space is at a premium, a compiler may pack data so 
that no padding is left; additional instructions may then need to be executed at run 
time to position packed data so that it can be operated on as if it were properly 
aligned.  
 
Areas (segments) of Memory 

1. The code (often called text in OS-speak) is fixed size and unchanging (self-
modifying code is long out of fashion). If there is OS support, the text could be 
marked execute only (or perhaps read and execute, but not write). All other areas 
would be marked non-executable (except for systems like lisp that execute their 
data). 
2. There is likely data of fixed size whose need can be determined by the compiler 
by examining the program's structure (and not by determining the program's 
execution pattern). One example is global data. Storage for this data would be 
allocated in the next area right after the code. A key point is that since the code 
and this area are of fixed size that does not change during execution, they, unlike 
the next two areas, no need for an expansion region. 
3. The stack is used for memory whose lifetime is stack-like. It is organized into 
activation records that are created as a procedure is called and destroyed when the 
procedure exits. It abuts the area of unused memory so can grow easily. Typically 
the stack is stored at the highest virtual addresses and grows downward 
(toward small addresses). However, it is sometimes easier in describing the 



  
 

activation records and their uses to pretend that the addresses are increasing (so 
that increments are positive). 
4. The heap is used for data whose lifetime is not as easily described. This data is 
allocated by the program itself, typically either with a language construct, such 
as new, or via a library function call, such as malloc(). It is deallocates either by 
another executable statement, such as a call to free(), or automatically by the 
system. 

Static versus Dynamic Storage Allocation 

Much (often most) data cannot be statically allocated. Either its size is not 
known at compile time or its lifetime is only a subset of the program's 
execution. 
Early versions of FORTRAN used only statically allocated data. This required 
that each array had a constant size specified in the program. Another consequence 
of supporting only static allocation was that recursion was forbidden (otherwise 
the compiler could not tell how many versions of a variable would be needed). 
 
Modern languages, including newer versions of FORTRAN, support both static 
and dynamic allocation of memory. 
 
The advantage supporting dynamic storage allocation is the increased flexibility 
and storage efficiency possible (instead of declaring an array to have a size 
adequate for the largest data set; just allocate what is needed). The advantage of 
static storage allocation is that it avoids the runtime costs for 
allocation/deallocation and may permit faster code sequences for referencing the 
data. 
An (unfortunately, all too common) error is a so-called memory leak where a long 
running program repeated allocates memory that it fails to delete, even after it 
can no longer be referenced. To avoid memory leaks and ease programming, 
several programming language systems employ automatic garbage collection. 
That means the runtime system itself determines when data can no longer be 
referenced and automatically deallocates it. 
 
 
 
 
 
 
 



  
 

Stack Allocation of Space 
Almost all compilers for languages that use procedures, functions, or methods 
as units of user-defined actions manage at least part of their run-time memory as 
a stack.  Each  time  a  procedure is  called, space for  its  local variables  is 
pushed onto a stack, and when the procedure  terminates, that space is popped 
off  the  stack.  As  we  shall  see,  this  arrangement not  only  allows  space  to be 
shared by procedure calls whose durations do not overlap in time, but  it allows us 
to compile code for a procedure in such a way that the relative addresses of  its 
nonlocal variables are always the same, regardless of  the sequence of  procedure  
calls.  
 
Activation Trees 
Recall the Fibonacci sequence 1,1,2,3,5,8, ... defined by f(1)=f(2)=1 and, for n>2, 
f(n)=f(n-1)+f(n-2). Consider the function calls that result from a main program 
calling f (5). On the left they are shown in a linear fashion and, on the right, we 
show them in tree form. The latter is sometimes called the activation tree or call 
tree. 
 
 

 

 System starts main 
        enter f(5) 
            enter f(4) 
                enter f(3) 
      enter f(2) 
      exit f(2) 
      enter f(1) 
      exit f(1) 
                exit f(3) 
                enter f(2) 
                exit f(2)  
             exit f(4) 
             enter f(3)  
                enter f(2) 
                exit f(2) 
                enter f(1) 
                exit f(1) 
             exit f(3) 
           exit f(5) 
main ends 

int a[5]; 
int f (int n)  
{ 
if (n<3) return 1; 
return f(n-1)+f(n-2); 
} 
int main() 
{ 
int i; 
for (i=1; i<=5; i++) 
{ 
a[i] = f(i); } 

 



  
 

We can make the following observation about these procedure calls. 

1. If an activation of procedure p calls procedure q, then that activation of q must 
end before the activation of p can end.   
2. The order of activations (procedure calls) corresponds to a preorder 
traversal of the call tree. (root, left, and right) 
3. The order of deactivations (procedure returns) corresponds to postorder 
traversal of the call tree. (left, right, and root) 
4. If execution is currently in an activation corresponding to a node N of the 
activation tree, then the activations that are currently live are those corresponding 
to N and its ancestors in the tree. These live activations were called in the order 
given by the root-to-N path in the tree, and the returns will occur in the reverse 
order. 

Activation Records (ARs) 

Procedure calls and returns are usually managed by a run-time stack called the 
control stack. Each live activation has an  activation  record (sometimes called 
a  frame) on the control stack, with  the root of  the activation tree at the bottom,  
and the entire sequence of activation records on the stack corresponding to the path  
in  the  activation  tree  to  the  activation where control  currently  resides. The 
latter activation has its record at the top of the stack. 
 
Note that this is memory used by the compiled program, not by the compiler. 
The compiler's job is to generate code that obtains the needed memory. 
At any point in time the number of frames on the stack is the current depth of 
procedure calls. For example, in the Fibonacci execution shown above when f(4) 
is active there are three activation records on the control stack. 
 
ARs vary with the language and compiler implementation. Typical components are 
described with figure below. In the diagrams the stack grows down the page. 

 

 

 

 

 



  
 

Actual Parameters 

Returned Values 

Control Link 

Access Link 

Saved Machine Status 

Local Data 

Temporaries 

 
A general activation record 

 
Here is a list of the kinds of data that might appear in an activation record 

1. Temporaries. For example, recall the temporaries generated during expression 
evaluation. Often these can be held in machine registers. When that is not 
possible (e.g., there are more temporaries than registers), the temporary area is 
used. 
2. Local Data to the procedure being activated. 
3. A Saved machine status from the caller, which typically includes the return 
address and the machine registers. The register values are restored when control 
returns to the caller. 
4. The access link may be needed to locate data needed by the called procedure 
but found elsewhere, e.g., in another activation record  
5. The control link connects the ARs by pointing to the AR of the caller. 
6. The returned value. This is often placed in a register if it is a scalar. 
7. The actual parameters used by the calling procedure. Commonly, these 
values are not placed in the activation record but rather in registers, when possible, 
for greater efficiency. However, we show a space for them to be completely 
general. 

The diagram below on the right shows (part of) the control stack for the Fibonacci 
example at three points during the execution. In the upper left we have the initial 
state, we show the global variable a, although it is not in an activation record and 
actually is allocated before the program begins execution (it is statically allocated; 
recall that the stack and heap are each dynamically allocated). Also shown is the 
activation record for main, which contains storage for the local variable i. 

 



  
 

 

 
 
 
 
  
 (a) Frame for main 
 

int a[5] 
main 
int i 

 

 
 
 
 
 
 
 
(b) f(1)  is activated 

 

 

int a[5] 
main 
int i 
int n 
result 
f(1) 

 

int a[5] 
main 
int i 
int n 
result 
f(4) 
int n 
result 
f(2) 

( c) f(4), f(2)  are activated  

Below the initial state we see the next state when main has called f (1) and there 
are two activation records, one for main and one for f. The activation record for 
f contains space for the argument n and also for the result. There are no local 
variables in f. 

At the far right is a later state in the execution when f (4) has been called by main 
and has in turn called f (2). There are three activation records, one for main and 
two for f. It is these multiple activations for f that permits the recursive execution. 
There are two locations for n and two for the result. 

Calling Sequences 

The calling sequence, executed when one procedure (the caller) calls another 
(the callee), allocates an activation record (AR) on the stack and fills in the fields. 
Part of this work is done by the caller; the remainder by the callee. Although 
the work is shared, the AR is called the callee's AR. 
Since the procedure being called is defined in one place, but normally called 
from many places, we would expect to find more instances of the caller activation 
code than of the callee activation code. Thus it is wise, all else being equal, to 
assign as much of the work to the callee as possible. 

1. Values computed by the caller are placed before any items of size unknown by 
the caller. This way they can be referenced by the caller using fixed offsets. One 
possibility is to place values computed by the caller at the beginning of the 
activation record (AR), i.e., near the AR of the caller. The number of arguments 
may not be the same for different calls of the same function (so called varargs, e.g. 



  
 

printf () in C). However the (compiler of the) caller knows how many arguments 
there are so, where pink calls blue, the compilers knows how far the return values 
is from the beginning of the blue AR. Since this beginning of the blue AR is the 
end of the pink AR (or is one more depending on how you count), the caller 
knows (but only at run time) the offset of the return value location from its 
own stack pointer (sp, see below). 
2. Fixed length items are placed next. Their sizes are known to the caller and callee 
at compile time. Examples of fixed length items include the links and the saved 
status. 
3. Finally come items allocated by the callee whose size is known only at run-
time, e.g., arrays whose size depends on the parameters. 
4. The stack pointer sp is between the last two. One consequence of this location 
is that the temporaries and local data are actually above the stack. Fixed length data 
can be referenced by fixed offsets (known to the intermediate code generator) from 
the sp. 

 

 

 

 

 

 

 

The top picture illustrates the situation where a pink procedure (the caller) calls a 
blue procedure (the callee). Also shown is Blue's AR. Note that responsibility for 
this single AR is shared by both procedures. The picture is just an approximation: 
For example, the returned value is actually Blue's responsibility, although the 
space might well be allocated by Pink. Also some of the saved status, e.g., the old 
sp, is saved by Pink. 

The bottom picture show what happens when Blue, the callee, itself calls a green 
procedure and thus Blue is also a caller. You can see that Blue's responsibility 
includes part of its AR as well as part of Green's. 



  
 

  

 

 

 

 

 

 

  

1. The caller evaluates the arguments. (We use arguments for the caller, 
parameters for the callee.) 
2. The caller stores the return address and the (soon-to-be-updated) sp in the 
callee's AR. 
3. The caller increments sp so that instead of pointing into its AR, it points to the 
corresponding point in the callee's AR. 
4. The callee saves the registers and other (system dependent) information. 
5. The callee allocates and initializes its local data. 
6. The callee begins execution. 

 

Important Registers 

 Program Counter (pc): set this for procedure calls 
 Stack Pointer (sp): for activation frame info in stack-based environments 
 Base Pointer (bp): similar to the stack pointer, but points to the beginning of the 
activation record 

 


